lgd commited on
Commit
31ab787
1 Parent(s): b41e541

Add SetFit model

Browse files
Files changed (3) hide show
  1. README.md +37 -57
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -13,45 +13,25 @@ tags:
13
  - text-classification
14
  - generated_from_setfit_trainer
15
  widget:
16
- - text: weather satellite imagery update every 10 minute cloud top temperature colorized
17
- reveal area intensity lower level transparent satellite imagery combine data noaa
18
- go east west satellite jma himawari satellite providing full coverage weather
19
- event world west coast africa west east coast india tile service update recent
20
- image every 10 minute 15 km per pixel resolution infrared ir band detects radiation
21
- emitted earth???s surface atmosphere cloud ??·infrared window??? portion spectrum
22
- radiation wavelength near 103 micrometer term ??·window??? mean pass atmosphere
23
- relatively little absorption gas water vapor useful estimating emitting temperature
24
- earth???s surface cloud top major advantage ir band sense energy night imagery
25
- available 24 hour day advanced baseline imager abi instrument sample radiance
26
- earth sixteen spectral band using several array detector instrument???s focal
27
- plane single reflective band abi level 1b radiance product channel 1 6 approximate
28
- center wavelength 047 064 0865 1378 161 225 micron respectively digital map outgoing
29
- radiance value top atmosphere visible nearinfrared ir band single emissive band
30
- abi l1b radiance product channel 7 16 approximate center wavelength 39 6185 695
31
- 734 85 961 1035 112 123 133 micron respectively digital map outgoing radiance
32
- value top atmosphere ir band detector sample compressed packetized downlinked
33
- ground station level 0 data conversion calibrated geolocated pixel level 1b radiance
34
- data detector sample decompressed radiometrically corrected navigated resampled
35
- onto invariant output grid referred abi fixed grid
36
- - text: pipeline operator conducting risk assessment use ecological usa conjunction
37
- pipeline information data identify area may suffer longterm permanent environmentalresource
38
- damage event hazardous liquid pipeline accident user data encouraged read carefully
39
- technical report cited cross reference section understand limitation ecological
40
- usa data dataset comprises unusually sensitive area usa data ecological resource
41
- state wyoming accordance pipeline safety law 49 usc section 60109 phmsa required
42
- identify area unusually sensitive environmental damage event hazardous liquid
43
- pipeline accident interaction various regulatory agency pipeline operator private
44
- contractor nonprofit conservation organization general public process developed
45
- adopted phmsa identify usa ecological resource process consists identifying set
46
- candidate ecological resource using approved data source subjecting candidate
47
- set filter criterion determine usa identification usa conducted using standardized
48
- data processing step automated gi model resultant usa data applicable current
49
- future regulatory requirement specified phmsa including limited pipeline integrity
50
- management spill response planning additional information concerning ecological
51
- usa please refer document listed cross reference section report
52
- - text: southern ontario land resource information system solris 20
53
- - text: toronto employment survey summary table
54
- - text: cordon data directional traffic count
55
  inference: false
56
  model-index:
57
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
@@ -65,16 +45,16 @@ model-index:
65
  split: test
66
  metrics:
67
  - type: accuracy
68
- value: 0.295
69
  name: Accuracy
70
  - type: precision
71
- value: 0.41697416974169743
72
  name: Precision
73
  - type: recall
74
- value: 0.5044642857142857
75
  name: Recall
76
  - type: f1
77
- value: 0.45656565656565656
78
  name: F1
79
  ---
80
 
@@ -110,7 +90,7 @@ The model has been trained using an efficient few-shot learning technique that i
110
  ### Metrics
111
  | Label | Accuracy | Precision | Recall | F1 |
112
  |:--------|:---------|:----------|:-------|:-------|
113
- | **all** | 0.295 | 0.4170 | 0.5045 | 0.4566 |
114
 
115
  ## Uses
116
 
@@ -130,7 +110,7 @@ from setfit import SetFitModel
130
  # Download from the 🤗 Hub
131
  model = SetFitModel.from_pretrained("lgd/setfit-multilabel")
132
  # Run inference
133
- preds = model("cordon data directional traffic count")
134
  ```
135
 
136
  <!--
@@ -162,7 +142,7 @@ preds = model("cordon data directional traffic count")
162
  ### Training Set Metrics
163
  | Training set | Min | Median | Max |
164
  |:-------------|:----|:-------|:----|
165
- | Word count | 1 | 4.55 | 11 |
166
 
167
  ### Training Hyperparameters
168
  - batch_size: (16, 16)
@@ -185,17 +165,17 @@ preds = model("cordon data directional traffic count")
185
  ### Training Results
186
  | Epoch | Step | Training Loss | Validation Loss |
187
  |:-----:|:----:|:-------------:|:---------------:|
188
- | 0.002 | 1 | 0.3892 | - |
189
- | 0.1 | 50 | 0.2344 | - |
190
- | 0.2 | 100 | 0.2476 | - |
191
- | 0.3 | 150 | 0.0538 | - |
192
- | 0.4 | 200 | 0.0805 | - |
193
- | 0.5 | 250 | 0.0974 | - |
194
- | 0.6 | 300 | 0.0238 | - |
195
- | 0.7 | 350 | 0.025 | - |
196
- | 0.8 | 400 | 0.0497 | - |
197
- | 0.9 | 450 | 0.0227 | - |
198
- | 1.0 | 500 | 0.1179 | - |
199
 
200
  ### Framework Versions
201
  - Python: 3.10.12
 
13
  - text-classification
14
  - generated_from_setfit_trainer
15
  widget:
16
+ - text: temperature salinity profile collected ctd cast nw atlantic limit40 w noaa
17
+ ship delaware ii noaa ship albatross iv 14 january 1997 30 october 1997 data collected
18
+ 12 cruise multiple program ctd cast primarily made conjunction bongo plankton
19
+ tow plankton data included
20
+ - text: plume height misr 82420 california fire 2020 multiangle imaging spectroradiometer
21
+ misr team nasa jet propulsion laboratory california institute technology pasadena
22
+ california provided map wildfire smoke plume height several wildfire california
23
+ derived data acquired misr instrument board nasa terra satellite august 24 2020
24
+ misr carry nine fixed camera view scene different angle period seven minute accounting
25
+ true motion cloud due wind angular parallax cloud different view used derive height
26
+ smoke plume data contain plume height information czu lightning complex lnu lightning
27
+ complex scu lightning complex fire observed misr approximately 1210 pm local time
28
+ august 24 2020 plume height give indication fire intensity indicates whether smoke
29
+ impacting air quality groundlevel observation plume height also important input
30
+ air quality model predict smoke go might affect downwind misr plume height map
31
+ produced using misr interactive explorer minx software
32
+ - text: municipal land transfer tax revenue summary
33
+ - text: aggregated broccoli production yield
34
+ - text: street furniture bicycle parking
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  inference: false
36
  model-index:
37
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
 
45
  split: test
46
  metrics:
47
  - type: accuracy
48
+ value: 0.595
49
  name: Accuracy
50
  - type: precision
51
+ value: 0.7037037037037037
52
  name: Precision
53
  - type: recall
54
+ value: 0.8407079646017699
55
  name: Recall
56
  - type: f1
57
+ value: 0.7661290322580645
58
  name: F1
59
  ---
60
 
 
90
  ### Metrics
91
  | Label | Accuracy | Precision | Recall | F1 |
92
  |:--------|:---------|:----------|:-------|:-------|
93
+ | **all** | 0.595 | 0.7037 | 0.8407 | 0.7661 |
94
 
95
  ## Uses
96
 
 
110
  # Download from the 🤗 Hub
111
  model = SetFitModel.from_pretrained("lgd/setfit-multilabel")
112
  # Run inference
113
+ preds = model("street furniture bicycle parking")
114
  ```
115
 
116
  <!--
 
142
  ### Training Set Metrics
143
  | Training set | Min | Median | Max |
144
  |:-------------|:----|:-------|:----|
145
+ | Word count | 1 | 59.4 | 411 |
146
 
147
  ### Training Hyperparameters
148
  - batch_size: (16, 16)
 
165
  ### Training Results
166
  | Epoch | Step | Training Loss | Validation Loss |
167
  |:-----:|:----:|:-------------:|:---------------:|
168
+ | 0.002 | 1 | 0.2153 | - |
169
+ | 0.1 | 50 | 0.201 | - |
170
+ | 0.2 | 100 | 0.1433 | - |
171
+ | 0.3 | 150 | 0.0812 | - |
172
+ | 0.4 | 200 | 0.0866 | - |
173
+ | 0.5 | 250 | 0.0306 | - |
174
+ | 0.6 | 300 | 0.1093 | - |
175
+ | 0.7 | 350 | 0.0647 | - |
176
+ | 0.8 | 400 | 0.0255 | - |
177
+ | 0.9 | 450 | 0.0421 | - |
178
+ | 1.0 | 500 | 0.0366 | - |
179
 
180
  ### Framework Versions
181
  - Python: 3.10.12
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e41900dea02c1c3a7334b67354e5fee53c628344ac880ade9dfb61bad97cea0a
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ed78543ca4c52601032949c89bb1c5597c6ded96b32366bb9a919cdabc09e1
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7977aed629ae22bcdd0b7c348817a6cf8ba615d4b0464851c05e304b392410d
3
  size 26916
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d04c28ebe8951a2c604c4d8f8f0d6a937ce22a97342163d6c56cfae0d683c6da
3
  size 26916