Add SetFit model
Browse files- README.md +37 -57
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -13,45 +13,25 @@ tags:
|
|
13 |
- text-classification
|
14 |
- generated_from_setfit_trainer
|
15 |
widget:
|
16 |
-
- text:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
onto invariant output grid referred abi fixed grid
|
36 |
-
- text: pipeline operator conducting risk assessment use ecological usa conjunction
|
37 |
-
pipeline information data identify area may suffer longterm permanent environmentalresource
|
38 |
-
damage event hazardous liquid pipeline accident user data encouraged read carefully
|
39 |
-
technical report cited cross reference section understand limitation ecological
|
40 |
-
usa data dataset comprises unusually sensitive area usa data ecological resource
|
41 |
-
state wyoming accordance pipeline safety law 49 usc section 60109 phmsa required
|
42 |
-
identify area unusually sensitive environmental damage event hazardous liquid
|
43 |
-
pipeline accident interaction various regulatory agency pipeline operator private
|
44 |
-
contractor nonprofit conservation organization general public process developed
|
45 |
-
adopted phmsa identify usa ecological resource process consists identifying set
|
46 |
-
candidate ecological resource using approved data source subjecting candidate
|
47 |
-
set filter criterion determine usa identification usa conducted using standardized
|
48 |
-
data processing step automated gi model resultant usa data applicable current
|
49 |
-
future regulatory requirement specified phmsa including limited pipeline integrity
|
50 |
-
management spill response planning additional information concerning ecological
|
51 |
-
usa please refer document listed cross reference section report
|
52 |
-
- text: southern ontario land resource information system solris 20
|
53 |
-
- text: toronto employment survey summary table
|
54 |
-
- text: cordon data directional traffic count
|
55 |
inference: false
|
56 |
model-index:
|
57 |
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
@@ -65,16 +45,16 @@ model-index:
|
|
65 |
split: test
|
66 |
metrics:
|
67 |
- type: accuracy
|
68 |
-
value: 0.
|
69 |
name: Accuracy
|
70 |
- type: precision
|
71 |
-
value: 0.
|
72 |
name: Precision
|
73 |
- type: recall
|
74 |
-
value: 0.
|
75 |
name: Recall
|
76 |
- type: f1
|
77 |
-
value: 0.
|
78 |
name: F1
|
79 |
---
|
80 |
|
@@ -110,7 +90,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
110 |
### Metrics
|
111 |
| Label | Accuracy | Precision | Recall | F1 |
|
112 |
|:--------|:---------|:----------|:-------|:-------|
|
113 |
-
| **all** | 0.
|
114 |
|
115 |
## Uses
|
116 |
|
@@ -130,7 +110,7 @@ from setfit import SetFitModel
|
|
130 |
# Download from the 🤗 Hub
|
131 |
model = SetFitModel.from_pretrained("lgd/setfit-multilabel")
|
132 |
# Run inference
|
133 |
-
preds = model("
|
134 |
```
|
135 |
|
136 |
<!--
|
@@ -162,7 +142,7 @@ preds = model("cordon data directional traffic count")
|
|
162 |
### Training Set Metrics
|
163 |
| Training set | Min | Median | Max |
|
164 |
|:-------------|:----|:-------|:----|
|
165 |
-
| Word count | 1 | 4
|
166 |
|
167 |
### Training Hyperparameters
|
168 |
- batch_size: (16, 16)
|
@@ -185,17 +165,17 @@ preds = model("cordon data directional traffic count")
|
|
185 |
### Training Results
|
186 |
| Epoch | Step | Training Loss | Validation Loss |
|
187 |
|:-----:|:----:|:-------------:|:---------------:|
|
188 |
-
| 0.002 | 1 | 0.
|
189 |
-
| 0.1 | 50 | 0.
|
190 |
-
| 0.2 | 100 | 0.
|
191 |
-
| 0.3 | 150 | 0.
|
192 |
-
| 0.4 | 200 | 0.
|
193 |
-
| 0.5 | 250 | 0.
|
194 |
-
| 0.6 | 300 | 0.
|
195 |
-
| 0.7 | 350 | 0.
|
196 |
-
| 0.8 | 400 | 0.
|
197 |
-
| 0.9 | 450 | 0.
|
198 |
-
| 1.0 | 500 | 0.
|
199 |
|
200 |
### Framework Versions
|
201 |
- Python: 3.10.12
|
|
|
13 |
- text-classification
|
14 |
- generated_from_setfit_trainer
|
15 |
widget:
|
16 |
+
- text: temperature salinity profile collected ctd cast nw atlantic limit40 w noaa
|
17 |
+
ship delaware ii noaa ship albatross iv 14 january 1997 30 october 1997 data collected
|
18 |
+
12 cruise multiple program ctd cast primarily made conjunction bongo plankton
|
19 |
+
tow plankton data included
|
20 |
+
- text: plume height misr 82420 california fire 2020 multiangle imaging spectroradiometer
|
21 |
+
misr team nasa jet propulsion laboratory california institute technology pasadena
|
22 |
+
california provided map wildfire smoke plume height several wildfire california
|
23 |
+
derived data acquired misr instrument board nasa terra satellite august 24 2020
|
24 |
+
misr carry nine fixed camera view scene different angle period seven minute accounting
|
25 |
+
true motion cloud due wind angular parallax cloud different view used derive height
|
26 |
+
smoke plume data contain plume height information czu lightning complex lnu lightning
|
27 |
+
complex scu lightning complex fire observed misr approximately 1210 pm local time
|
28 |
+
august 24 2020 plume height give indication fire intensity indicates whether smoke
|
29 |
+
impacting air quality groundlevel observation plume height also important input
|
30 |
+
air quality model predict smoke go might affect downwind misr plume height map
|
31 |
+
produced using misr interactive explorer minx software
|
32 |
+
- text: municipal land transfer tax revenue summary
|
33 |
+
- text: aggregated broccoli production yield
|
34 |
+
- text: street furniture bicycle parking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
inference: false
|
36 |
model-index:
|
37 |
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
|
|
45 |
split: test
|
46 |
metrics:
|
47 |
- type: accuracy
|
48 |
+
value: 0.595
|
49 |
name: Accuracy
|
50 |
- type: precision
|
51 |
+
value: 0.7037037037037037
|
52 |
name: Precision
|
53 |
- type: recall
|
54 |
+
value: 0.8407079646017699
|
55 |
name: Recall
|
56 |
- type: f1
|
57 |
+
value: 0.7661290322580645
|
58 |
name: F1
|
59 |
---
|
60 |
|
|
|
90 |
### Metrics
|
91 |
| Label | Accuracy | Precision | Recall | F1 |
|
92 |
|:--------|:---------|:----------|:-------|:-------|
|
93 |
+
| **all** | 0.595 | 0.7037 | 0.8407 | 0.7661 |
|
94 |
|
95 |
## Uses
|
96 |
|
|
|
110 |
# Download from the 🤗 Hub
|
111 |
model = SetFitModel.from_pretrained("lgd/setfit-multilabel")
|
112 |
# Run inference
|
113 |
+
preds = model("street furniture bicycle parking")
|
114 |
```
|
115 |
|
116 |
<!--
|
|
|
142 |
### Training Set Metrics
|
143 |
| Training set | Min | Median | Max |
|
144 |
|:-------------|:----|:-------|:----|
|
145 |
+
| Word count | 1 | 59.4 | 411 |
|
146 |
|
147 |
### Training Hyperparameters
|
148 |
- batch_size: (16, 16)
|
|
|
165 |
### Training Results
|
166 |
| Epoch | Step | Training Loss | Validation Loss |
|
167 |
|:-----:|:----:|:-------------:|:---------------:|
|
168 |
+
| 0.002 | 1 | 0.2153 | - |
|
169 |
+
| 0.1 | 50 | 0.201 | - |
|
170 |
+
| 0.2 | 100 | 0.1433 | - |
|
171 |
+
| 0.3 | 150 | 0.0812 | - |
|
172 |
+
| 0.4 | 200 | 0.0866 | - |
|
173 |
+
| 0.5 | 250 | 0.0306 | - |
|
174 |
+
| 0.6 | 300 | 0.1093 | - |
|
175 |
+
| 0.7 | 350 | 0.0647 | - |
|
176 |
+
| 0.8 | 400 | 0.0255 | - |
|
177 |
+
| 0.9 | 450 | 0.0421 | - |
|
178 |
+
| 1.0 | 500 | 0.0366 | - |
|
179 |
|
180 |
### Framework Versions
|
181 |
- Python: 3.10.12
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73ed78543ca4c52601032949c89bb1c5597c6ded96b32366bb9a919cdabc09e1
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 26916
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d04c28ebe8951a2c604c4d8f8f0d6a937ce22a97342163d6c56cfae0d683c6da
|
3 |
size 26916
|