|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- robust-speech-event |
|
- pt |
|
- hf-asr-leaderboard |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-pt-cv |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 6 |
|
type: common_voice |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 24.29 |
|
- name: Test CER |
|
type: cer |
|
value: 7.51 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: sv |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 55.72 |
|
- name: Test CER |
|
type: cer |
|
value: 21.82 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 47.88 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 50.78 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-pt-cv |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3418 |
|
- Wer: 0.3581 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 10.9035 | 0.2 | 100 | 4.2750 | 1.0 | |
|
| 3.3275 | 0.41 | 200 | 3.0334 | 1.0 | |
|
| 3.0016 | 0.61 | 300 | 2.9494 | 1.0 | |
|
| 2.1874 | 0.82 | 400 | 1.4355 | 0.8721 | |
|
| 1.09 | 1.02 | 500 | 0.9987 | 0.7165 | |
|
| 0.8251 | 1.22 | 600 | 0.7886 | 0.6406 | |
|
| 0.6927 | 1.43 | 700 | 0.6753 | 0.5801 | |
|
| 0.6143 | 1.63 | 800 | 0.6300 | 0.5509 | |
|
| 0.5451 | 1.84 | 900 | 0.5586 | 0.5156 | |
|
| 0.5003 | 2.04 | 1000 | 0.5493 | 0.5027 | |
|
| 0.3712 | 2.24 | 1100 | 0.5271 | 0.4872 | |
|
| 0.3486 | 2.45 | 1200 | 0.4953 | 0.4817 | |
|
| 0.3498 | 2.65 | 1300 | 0.4619 | 0.4538 | |
|
| 0.3112 | 2.86 | 1400 | 0.4570 | 0.4387 | |
|
| 0.3013 | 3.06 | 1500 | 0.4437 | 0.4147 | |
|
| 0.2136 | 3.27 | 1600 | 0.4176 | 0.4124 | |
|
| 0.2131 | 3.47 | 1700 | 0.4281 | 0.4194 | |
|
| 0.2099 | 3.67 | 1800 | 0.3864 | 0.3949 | |
|
| 0.1925 | 3.88 | 1900 | 0.3926 | 0.3913 | |
|
| 0.1709 | 4.08 | 2000 | 0.3764 | 0.3804 | |
|
| 0.1406 | 4.29 | 2100 | 0.3787 | 0.3742 | |
|
| 0.1342 | 4.49 | 2200 | 0.3645 | 0.3693 | |
|
| 0.1305 | 4.69 | 2300 | 0.3463 | 0.3625 | |
|
| 0.1298 | 4.9 | 2400 | 0.3418 | 0.3581 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.13.3 |
|
- Tokenizers 0.10.3 |
|
|