arubenruben commited on
Commit
c5b3d1b
1 Parent(s): 9f557a5

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: neuralmind/bert-base-portuguese-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - harem
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: NER_harem_bert-base-portuguese-cased
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: harem
21
+ type: harem
22
+ config: default
23
+ split: test
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.6852879944482998
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.7377661561449383
32
+ - name: F1
33
+ type: f1
34
+ value: 0.7105594531390537
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.952219112355058
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # NER_harem_bert-base-portuguese-cased
44
+
45
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2351
48
+ - Precision: 0.6853
49
+ - Recall: 0.7378
50
+ - F1: 0.7106
51
+ - Accuracy: 0.9522
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 3e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 300
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 16 | 0.7692 | 0.0 | 0.0 | 0.0 | 0.8358 |
83
+ | No log | 2.0 | 32 | 0.4831 | 0.3140 | 0.2731 | 0.2921 | 0.8790 |
84
+ | No log | 3.0 | 48 | 0.3405 | 0.4692 | 0.4897 | 0.4793 | 0.9119 |
85
+ | No log | 4.0 | 64 | 0.2747 | 0.5481 | 0.6156 | 0.5799 | 0.9340 |
86
+ | No log | 5.0 | 80 | 0.2282 | 0.6077 | 0.6758 | 0.6399 | 0.9443 |
87
+ | No log | 6.0 | 96 | 0.2145 | 0.6267 | 0.6892 | 0.6565 | 0.9479 |
88
+ | No log | 7.0 | 112 | 0.2223 | 0.6395 | 0.6926 | 0.6650 | 0.9493 |
89
+ | No log | 8.0 | 128 | 0.2100 | 0.6822 | 0.7378 | 0.7089 | 0.9530 |
90
+ | No log | 9.0 | 144 | 0.2077 | 0.6810 | 0.7497 | 0.7137 | 0.9537 |
91
+ | No log | 10.0 | 160 | 0.2173 | 0.6846 | 0.7460 | 0.7140 | 0.9523 |
92
+ | No log | 11.0 | 176 | 0.2226 | 0.7001 | 0.7594 | 0.7285 | 0.9542 |
93
+ | No log | 12.0 | 192 | 0.2204 | 0.7015 | 0.7568 | 0.7281 | 0.9538 |
94
+ | No log | 13.0 | 208 | 0.2278 | 0.6746 | 0.7411 | 0.7063 | 0.9533 |
95
+ | No log | 14.0 | 224 | 0.2351 | 0.6853 | 0.7378 | 0.7106 | 0.9522 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.38.2
101
+ - Pytorch 2.2.1+cu121
102
+ - Datasets 2.18.0
103
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "neuralmind/bert-large-portuguese-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-PESSOA",
15
+ "2": "I-PESSOA",
16
+ "3": "B-ORGANIZACAO",
17
+ "4": "I-ORGANIZACAO",
18
+ "5": "B-LOCAL",
19
+ "6": "I-LOCAL",
20
+ "7": "B-TEMPO",
21
+ "8": "I-TEMPO",
22
+ "9": "B-VALOR",
23
+ "10": "I-VALOR",
24
+ "11": "B-ABSTRACCAO",
25
+ "12": "I-ABSTRACCAO",
26
+ "13": "B-ACONTECIMENTO",
27
+ "14": "I-ACONTECIMENTO",
28
+ "15": "B-COISA",
29
+ "16": "I-COISA",
30
+ "17": "B-OBRA",
31
+ "18": "I-OBRA",
32
+ "19": "B-OUTRO",
33
+ "20": "I-OUTRO"
34
+ },
35
+ "initializer_range": 0.02,
36
+ "intermediate_size": 4096,
37
+ "label2id": {
38
+ "B-ABSTRACCAO": 11,
39
+ "B-ACONTECIMENTO": 13,
40
+ "B-COISA": 15,
41
+ "B-LOCAL": 5,
42
+ "B-OBRA": 17,
43
+ "B-ORGANIZACAO": 3,
44
+ "B-OUTRO": 19,
45
+ "B-PESSOA": 1,
46
+ "B-TEMPO": 7,
47
+ "B-VALOR": 9,
48
+ "I-ABSTRACCAO": 12,
49
+ "I-ACONTECIMENTO": 14,
50
+ "I-COISA": 16,
51
+ "I-LOCAL": 6,
52
+ "I-OBRA": 18,
53
+ "I-ORGANIZACAO": 4,
54
+ "I-OUTRO": 20,
55
+ "I-PESSOA": 2,
56
+ "I-TEMPO": 8,
57
+ "I-VALOR": 10,
58
+ "O": 0
59
+ },
60
+ "layer_norm_eps": 1e-12,
61
+ "max_position_embeddings": 512,
62
+ "model_type": "bert",
63
+ "num_attention_heads": 16,
64
+ "num_hidden_layers": 24,
65
+ "output_past": true,
66
+ "pad_token_id": 0,
67
+ "pooler_fc_size": 768,
68
+ "pooler_num_attention_heads": 12,
69
+ "pooler_num_fc_layers": 3,
70
+ "pooler_size_per_head": 128,
71
+ "pooler_type": "first_token_transform",
72
+ "position_embedding_type": "absolute",
73
+ "torch_dtype": "float32",
74
+ "transformers_version": "4.38.2",
75
+ "type_vocab_size": 2,
76
+ "use_cache": true,
77
+ "vocab_size": 29794
78
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bbed3ee6ed46b717c12a423ca933dbe0c7d2d7ca515a93e88f745956cf5010e
3
+ size 1333520180
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d814190b7cb68ab06b853ea2df41e9e21b26ae7ce04d3ad63f165981687e2390
3
+ size 4984
vocab.txt ADDED
The diff for this file is too large to render. See raw diff