---
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: workspace/llm_training/axolotl/llama3-ja/output_openchat_megagon_lbgpt4_ja_8B_instruct
results: []
---
# Suzume
This Suzume 8B, a Japanese finetune of Llama 3.
Llama 3 has exhibited excellent performance on many English language benchmarks.
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in Japanese.
We have fine-tuned Llama 3 on almost 3,000 Japanese conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in Japanese.
Please feel free to comment on this model and give us feedback in the Community tab!
# How to use
You can use the original trained model with vLLM like so:
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="lightblue/suzume-llama-3-8B-japanese")
prompts = [
"東京のおすすめの観光スポットを教えて下さい",
]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Training config
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/llm_training/axolotl/llama3-ja/openchat_megagon_lbgpt4_ja.json
ds_type: json # see other options below
type: sharegpt
conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-ja/prepared_openchat_megagon_lbgpt4_ja
val_set_size: 0.01
output_dir: /workspace/llm_training/axolotl/llama3-ja/output_openchat_megagon_lbgpt4_ja_8B_instruct
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: False
use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: openchat_megagon_lbgpt4_ja_8B_instruct
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
# workspace/llm_training/axolotl/llama3-ja/output_openchat_megagon_lbgpt4_ja_8B_instruct
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9555
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.303 | 0.08 | 1 | 1.2664 |
| 1.4231 | 0.23 | 3 | 1.2409 |
| 1.1007 | 0.46 | 6 | 1.0264 |
| 1.0635 | 0.69 | 9 | 1.0154 |
| 1.0221 | 0.92 | 12 | 0.9555 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0