Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
---
|
2 |
license: other
|
|
|
|
|
|
|
3 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
-
- name:
|
8 |
results: []
|
9 |
---
|
10 |
|
@@ -38,9 +41,9 @@ sample_packing: true
|
|
38 |
pad_to_sequence_len: true
|
39 |
|
40 |
use_wandb: true
|
41 |
-
wandb_project:
|
42 |
-
wandb_entity:
|
43 |
-
wandb_name:
|
44 |
|
45 |
gradient_accumulation_steps: 2
|
46 |
micro_batch_size: 2
|
@@ -77,23 +80,68 @@ special_tokens:
|
|
77 |
|
78 |
</details><br>
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
More information needed
|
97 |
|
98 |
## Training procedure
|
99 |
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
license_name: llama-3
|
4 |
+
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
|
5 |
+
|
6 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
tags:
|
8 |
- generated_from_trainer
|
9 |
model-index:
|
10 |
+
- name: lightblue/suzume-llama-3-8B-multilingual
|
11 |
results: []
|
12 |
---
|
13 |
|
|
|
41 |
pad_to_sequence_len: true
|
42 |
|
43 |
use_wandb: true
|
44 |
+
wandb_project: wandb_project
|
45 |
+
wandb_entity: wandb_entity
|
46 |
+
wandb_name: wandb_name
|
47 |
|
48 |
gradient_accumulation_steps: 2
|
49 |
micro_batch_size: 2
|
|
|
80 |
|
81 |
</details><br>
|
82 |
|
83 |
+
<p align="center">
|
84 |
+
<img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
|
85 |
+
</p>
|
86 |
|
87 |
+
# Suzume
|
88 |
+
|
89 |
+
This Suzume 8B, a multilingual finetune of Llama 3.
|
90 |
+
|
91 |
+
Llama 3 has exhibited excellent performance on many English language benchmarks.
|
92 |
+
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in other languages.
|
93 |
|
94 |
+
We have fine-tuned Llama 3 on almost 90,000 multilingual conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in more languages.
|
95 |
|
96 |
+
Please feel free to comment on this model and give us feedback in the Community tab!
|
97 |
|
98 |
+
# How to use
|
99 |
|
100 |
+
The easiest way to use this model on your own computer is to use the [GGUF version of this model (lightblue/suzume-llama-3-8B-multilingual-gguf)](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-gguf) using a program such as (jan.ai)[https://jan.ai/] or [LM Studio](https://lmstudio.ai/).
|
101 |
+
|
102 |
+
If you want to use this model directly in Python, we recommend using vLLM for the fastest inference speeds.
|
103 |
+
|
104 |
+
```python
|
105 |
+
from vllm import LLM, SamplingParams
|
106 |
+
|
107 |
+
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
|
108 |
+
llm = LLM(model="lightblue/suzume-llama-3-8B-multilingual")
|
109 |
+
|
110 |
+
messages = []
|
111 |
+
messages.append({"role": "user", "content": "Bonjour!"})
|
112 |
+
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
|
113 |
+
prompts = [prompt]
|
114 |
+
|
115 |
+
outputs = llm.generate(prompts, sampling_params)
|
116 |
+
for output in outputs:
|
117 |
+
prompt = output.prompt
|
118 |
+
generated_text = output.outputs[0].text
|
119 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
120 |
+
```
|
121 |
|
122 |
+
# Evaluation scores
|
123 |
+
|
124 |
+
We achieve the following MT-Bench scores across 6 languages:
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
# Training data
|
129 |
+
|
130 |
+
We train on three sources of data to create this model:
|
131 |
+
|
132 |
+
* [lightblue/tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4) - 76,338 conversations
|
133 |
+
* A diverse dataset of initial inputs sampled from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) and then used to prompt `gpt-4-0125-preview`
|
134 |
+
* [megagonlabs/instruction_ja](https://github.com/megagonlabs/instruction_ja) - 669 conversations
|
135 |
+
* A hand-edited dataset of nearly 700 Japanese conversations taken originally from translations of the [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) dataset.
|
136 |
+
* [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json) - 6,206 conversations
|
137 |
+
* Conversations taken from humans talking to GPT-4
|
138 |
+
|
139 |
+
# workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3
|
140 |
+
|
141 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the above described dataset.
|
142 |
+
It achieves the following results on the evaluation set:
|
143 |
+
- Loss: 0.6595
|
144 |
|
|
|
145 |
|
146 |
## Training procedure
|
147 |
|