stage
Browse files- .gitmodules +4 -0
- README.md +12 -0
- install_args.txt +1 -0
- pyproject.toml +19 -0
- src/main.py +48 -0
- src/pipeline.py +29 -0
.gitmodules
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "newdream-sdxl-20"]
|
2 |
+
path = models/newdream-sdxl-20
|
3 |
+
url = https://huggingface.co/stablediffusionapi/newdream-sdxl-20
|
4 |
+
branch = main
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# edge-maxxing-newdream-sdxl
|
2 |
+
|
3 |
+
This holds the baseline for the SDXL Nvidia GeForce RTX 4090 contest, which can be forked freely and optimized
|
4 |
+
|
5 |
+
Some recommendations are as follows:
|
6 |
+
- Installing dependencies should be done in pyproject.toml, including git dependencies
|
7 |
+
- Compiled models should be included directly in the repository(rather than compiling during loading), loading time matters far more than file sizes
|
8 |
+
- Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
|
9 |
+
- Change `install_args.txt` to add `pip install` arguments to be used when installing the package
|
10 |
+
|
11 |
+
For testing, you need a docker container with pytorch and ubuntu 22.04,
|
12 |
+
you can download your listed dependencies with `pip install $(cat install_args.txt) -e .`, and then running `start_inference`
|
install_args.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
pyproject.toml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 61.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "edge-maxxing-4090-newdream"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 newdream contest"
|
8 |
+
requires-python = ">=3.10,<3.11"
|
9 |
+
version = "1.0.0"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.30.2",
|
12 |
+
"transformers==4.41.2",
|
13 |
+
"accelerate==0.31.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing#subdirectory=pipelines",
|
16 |
+
]
|
17 |
+
|
18 |
+
[project.scripts]
|
19 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from multiprocessing.connection import Listener
|
3 |
+
from os import chmod
|
4 |
+
from os.path import abspath
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
|
10 |
+
from pipeline import load_pipeline, infer
|
11 |
+
|
12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
print(f"Loading pipeline")
|
17 |
+
pipeline = load_pipeline()
|
18 |
+
|
19 |
+
print(f"Pipeline loaded")
|
20 |
+
|
21 |
+
print(f"Creating socket at '{SOCKET}'")
|
22 |
+
with Listener(SOCKET) as listener:
|
23 |
+
chmod(SOCKET, 0o777)
|
24 |
+
|
25 |
+
print(f"Awaiting connections")
|
26 |
+
with listener.accept() as connection:
|
27 |
+
print(f"Connected")
|
28 |
+
|
29 |
+
while True:
|
30 |
+
try:
|
31 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
32 |
+
except EOFError:
|
33 |
+
print(f"Inference socket exiting")
|
34 |
+
|
35 |
+
return
|
36 |
+
|
37 |
+
image = infer(request, pipeline)
|
38 |
+
|
39 |
+
data = BytesIO()
|
40 |
+
image.save(data, format=JpegImageFile.format)
|
41 |
+
|
42 |
+
packet = data.getvalue()
|
43 |
+
|
44 |
+
connection.send_bytes(packet)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == '__main__':
|
48 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL.Image import Image
|
3 |
+
from diffusers import StableDiffusionXLPipeline
|
4 |
+
from pipelines.models import TextToImageRequest
|
5 |
+
from torch import Generator
|
6 |
+
|
7 |
+
|
8 |
+
def load_pipeline() -> StableDiffusionXLPipeline:
|
9 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
10 |
+
"./models/newdream-sdxl-20",
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
local_files_only=True,
|
13 |
+
).to("cuda")
|
14 |
+
|
15 |
+
pipeline(prompt="")
|
16 |
+
|
17 |
+
return pipeline
|
18 |
+
|
19 |
+
|
20 |
+
def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image:
|
21 |
+
generator = Generator(pipeline.device).manual_seed(request.seed) if request.seed else None
|
22 |
+
|
23 |
+
return pipeline(
|
24 |
+
prompt=request.prompt,
|
25 |
+
negative_prompt=request.negative_prompt,
|
26 |
+
width=request.width,
|
27 |
+
height=request.height,
|
28 |
+
generator=generator,
|
29 |
+
).images[0]
|