likenneth commited on
Commit
b664cd3
1 Parent(s): 3c6845f

Upload LLaMAForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "results_dump/llama2_chat_7B_seed_42_top_48_heads_alpha_15",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_llama.LLaMAConfig",
8
+ "AutoModelForCausalLM": "modeling_llama.LLaMAForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "oproj_bias": true,
23
+ "output_head_hidden_states": false,
24
+ "pad_token_id": 0,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.27.0",
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
configuration_llama.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class LLaMAConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`~LLaMAModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`~LLaMAModel`] or [`~TFLLaMAModel`].
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
54
+ The non-linear activation function (function or string) in the decoder.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
58
+ The epsilon used by the rms normalization layers.
59
+ use_cache (`bool`, *optional*, defaults to `True`):
60
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
61
+ relevant if `config.is_decoder=True`.
62
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
63
+ Whether to tie weight embeddings
64
+ Example:
65
+
66
+ ```python
67
+ >>> from transformers import LLaMAModel, LLaMAConfig
68
+
69
+ >>> # Initializing a LLaMA llama-7b style configuration
70
+ >>> configuration = LLaMAConfig()
71
+
72
+ >>> # Initializing a model from the llama-7b style configuration
73
+ >>> model = LLaMAModel(configuration)
74
+
75
+ >>> # Accessing the model configuration
76
+ >>> configuration = model.config
77
+ ```"""
78
+ model_type = "llama"
79
+
80
+ def __init__(
81
+ self,
82
+ vocab_size=32000,
83
+ hidden_size=4096,
84
+ intermediate_size=11008,
85
+ num_hidden_layers=32,
86
+ num_attention_heads=32,
87
+ hidden_act="silu",
88
+ initializer_range=0.02,
89
+ rms_norm_eps=1e-6,
90
+ use_cache=True,
91
+ pad_token_id=-1,
92
+ bos_token_id=0,
93
+ eos_token_id=1,
94
+ tie_word_embeddings=False,
95
+ output_head_hidden_states=False,
96
+ oproj_bias=False,
97
+ **kwargs,
98
+ ):
99
+ self.vocab_size = vocab_size
100
+ self.hidden_size = hidden_size
101
+ self.intermediate_size = intermediate_size
102
+ self.num_hidden_layers = num_hidden_layers
103
+ self.num_attention_heads = num_attention_heads
104
+ self.hidden_act = hidden_act
105
+ self.initializer_range = initializer_range
106
+ self.rms_norm_eps = rms_norm_eps
107
+ self.use_cache = use_cache
108
+ self.output_head_hidden_states = output_head_hidden_states
109
+ self.oproj_bias = oproj_bias
110
+ super().__init__(
111
+ pad_token_id=pad_token_id,
112
+ bos_token_id=bos_token_id,
113
+ eos_token_id=eos_token_id,
114
+ tie_word_embeddings=tie_word_embeddings,
115
+ **kwargs,
116
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.9,
8
+ "top_p": 0.6,
9
+ "transformers_version": "4.27.0"
10
+ }
modeling_llama.py ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import CrossEntropyLoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (
31
+ BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ )
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.utils import (
36
+ add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ logging,
40
+ replace_return_docstrings,
41
+ )
42
+ from .configuration_llama import LLaMAConfig
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CHECKPOINT_FOR_DOC = "llama-7b"
48
+ _CONFIG_FOR_DOC = "LLaMAConfig"
49
+
50
+
51
+ def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
52
+ """
53
+ Make causal mask used for bi-directional self-attention.
54
+ """
55
+ bsz, tgt_len = input_ids_shape
56
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
57
+ mask_cond = torch.arange(mask.size(-1))
58
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
59
+ mask = mask.to(dtype)
60
+
61
+ if past_key_values_length > 0:
62
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
63
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
64
+
65
+
66
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
67
+ """
68
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
69
+ """
70
+ bsz, src_len = mask.size()
71
+ tgt_len = tgt_len if tgt_len is not None else src_len
72
+
73
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
74
+
75
+ inverted_mask = 1.0 - expanded_mask
76
+
77
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
78
+
79
+
80
+ class RMSNorm(nn.Module):
81
+ def __init__(self, hidden_size, eps=1e-6):
82
+ """
83
+ RMSNorm is equivalent to T5LayerNorm
84
+ """
85
+ super().__init__()
86
+ self.weight = nn.Parameter(torch.ones(hidden_size))
87
+ self.variance_epsilon = eps
88
+
89
+ def forward(self, hidden_states):
90
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+
93
+ # convert into half-precision if necessary
94
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
95
+ hidden_states = hidden_states.to(self.weight.dtype)
96
+
97
+ return self.weight * hidden_states
98
+
99
+
100
+ class RotaryEmbedding(torch.nn.Module):
101
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
102
+ super().__init__()
103
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
104
+ self.register_buffer("inv_freq", inv_freq)
105
+
106
+ # Build here to make `torch.jit.trace` work.
107
+ self.max_seq_len_cached = max_position_embeddings
108
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
109
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
110
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
111
+ emb = torch.cat((freqs, freqs), dim=-1)
112
+ self.cos_cached = emb.cos()[None, None, :, :]
113
+ self.sin_cached = emb.sin()[None, None, :, :]
114
+
115
+ def forward(self, x, seq_len=None):
116
+ # x: [bs, num_attention_heads, seq_len, head_size]
117
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
118
+ if seq_len > self.max_seq_len_cached:
119
+ self.max_seq_len_cached = seq_len
120
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
121
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
122
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
123
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
124
+ self.cos_cached = emb.cos()[None, None, :, :].to(dtype=x.dtype)
125
+ self.sin_cached = emb.sin()[None, None, :, :].to(dtype=x.dtype)
126
+ return (
127
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype, device=x.device),
128
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype, device=x.device),
129
+ )
130
+
131
+
132
+ def rotate_half(x):
133
+ """Rotates half the hidden dims of the input."""
134
+ x1 = x[..., : x.shape[-1] // 2]
135
+ x2 = x[..., x.shape[-1] // 2 :]
136
+ return torch.cat((-x2, x1), dim=-1)
137
+
138
+
139
+ def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
140
+ cos = cos[..., offset : q.shape[-2] + offset, :]
141
+ sin = sin[..., offset : q.shape[-2] + offset, :]
142
+ q_embed = (q * cos) + (rotate_half(q) * sin)
143
+ k_embed = (k * cos) + (rotate_half(k) * sin)
144
+ return q_embed, k_embed
145
+
146
+
147
+ class LLaMAMLP(nn.Module):
148
+ def __init__(
149
+ self,
150
+ hidden_size: int,
151
+ intermediate_size: int,
152
+ hidden_act: str,
153
+ ):
154
+ super().__init__()
155
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
156
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
157
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
158
+ self.act_fn = ACT2FN[hidden_act]
159
+
160
+ def forward(self, x):
161
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
162
+
163
+
164
+ class LLaMAAttention(nn.Module):
165
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
166
+
167
+ def __init__(
168
+ self,
169
+ hidden_size: int,
170
+ num_heads: int,
171
+ oproj_bias: bool = False,
172
+ ):
173
+ super().__init__()
174
+ self.hidden_size = hidden_size
175
+ self.num_heads = num_heads
176
+ self.head_dim = hidden_size // num_heads
177
+
178
+ if (self.head_dim * num_heads) != self.hidden_size:
179
+ raise ValueError(
180
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
181
+ f" and `num_heads`: {num_heads})."
182
+ )
183
+ self.q_proj = nn.Linear(
184
+ hidden_size,
185
+ num_heads * self.head_dim,
186
+ bias=False,
187
+ )
188
+ self.k_proj = nn.Linear(
189
+ hidden_size,
190
+ num_heads * self.head_dim,
191
+ bias=False,
192
+ )
193
+ self.v_proj = nn.Linear(
194
+ hidden_size,
195
+ num_heads * self.head_dim,
196
+ bias=False,
197
+ )
198
+
199
+ self.att_out = nn.Identity()
200
+ self.value_out = nn.Identity()
201
+ self.head_out = nn.Identity()
202
+
203
+ self.o_proj = nn.Linear(
204
+ num_heads * self.head_dim,
205
+ hidden_size,
206
+ bias=oproj_bias,
207
+ )
208
+ self.rotary_emb = RotaryEmbedding(self.head_dim)
209
+
210
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
211
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
212
+
213
+ def forward(
214
+ self,
215
+ hidden_states: torch.Tensor,
216
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
217
+ attention_mask: Optional[torch.Tensor] = None,
218
+ output_attentions: bool = False,
219
+ output_head_hidden_states: bool = False,
220
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
221
+ """Input shape: Batch x Time x Channel"""
222
+
223
+ bsz, q_len, _ = hidden_states.size()
224
+
225
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
226
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
227
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
228
+
229
+ kv_seq_len = key_states.shape[-2]
230
+ offset = 0
231
+ if past_key_value is not None:
232
+ offset = past_key_value[0].shape[-2]
233
+ kv_seq_len += offset
234
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
235
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, offset=offset)
236
+ # [bsz, nh, t, hd]
237
+
238
+ if past_key_value is not None:
239
+ # reuse k, v, self_attention
240
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
241
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
242
+
243
+ past_key_value = (key_states, value_states)
244
+
245
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
246
+
247
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
248
+ raise ValueError(
249
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
250
+ f" {attn_weights.size()}"
251
+ )
252
+
253
+ if attention_mask is not None:
254
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
255
+ raise ValueError(
256
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
257
+ )
258
+ attn_weights = attn_weights + attention_mask
259
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
260
+
261
+ # upcast attention to fp32
262
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
263
+ attn_weights = self.att_out(attn_weights)
264
+ value_states = self.value_out(value_states)
265
+ attn_output = torch.matmul(attn_weights, value_states)
266
+
267
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
268
+ raise ValueError(
269
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
270
+ f" {attn_output.size()}"
271
+ )
272
+
273
+ attn_output = attn_output.transpose(1, 2)
274
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
275
+ attn_output = self.head_out(attn_output)
276
+ attn_output = self.o_proj(attn_output)
277
+
278
+ if not output_attentions:
279
+ attn_weights = None
280
+
281
+ return attn_output, attn_weights, past_key_value
282
+
283
+
284
+ class LLaMADecoderLayer(nn.Module):
285
+ def __init__(self, config: LLaMAConfig):
286
+ super().__init__()
287
+ self.hidden_size = config.hidden_size
288
+ self.self_attn = LLaMAAttention(
289
+ hidden_size=self.hidden_size,
290
+ num_heads=config.num_attention_heads,
291
+ oproj_bias=config.oproj_bias,
292
+ )
293
+ self.mlp = LLaMAMLP(
294
+ hidden_size=self.hidden_size,
295
+ intermediate_size=config.intermediate_size,
296
+ hidden_act=config.hidden_act,
297
+ )
298
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
299
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
300
+
301
+ def forward(
302
+ self,
303
+ hidden_states: torch.Tensor,
304
+ attention_mask: Optional[torch.Tensor] = None,
305
+ output_attentions: Optional[bool] = False,
306
+ use_cache: Optional[bool] = False,
307
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
308
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
309
+ """
310
+ Args:
311
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
312
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
313
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
314
+ output_attentions (`bool`, *optional*):
315
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
316
+ returned tensors for more detail.
317
+ use_cache (`bool`, *optional*):
318
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
319
+ (see `past_key_values`).
320
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
321
+ """
322
+
323
+ residual = hidden_states
324
+
325
+ hidden_states = self.input_layernorm(hidden_states)
326
+
327
+ # Self Attention
328
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
329
+ hidden_states=hidden_states,
330
+ past_key_value=past_key_value,
331
+ attention_mask=attention_mask,
332
+ output_attentions=output_attentions,
333
+ )
334
+
335
+ hidden_states = residual + hidden_states
336
+
337
+ # Fully Connected
338
+ residual = hidden_states
339
+ hidden_states = self.post_attention_layernorm(hidden_states)
340
+ hidden_states = self.mlp(hidden_states)
341
+ hidden_states = residual + hidden_states
342
+
343
+ outputs = [hidden_states,]
344
+
345
+ if output_attentions:
346
+ outputs += [self_attn_weights,]
347
+
348
+ if use_cache:
349
+ outputs += [present_key_value,]
350
+
351
+ return outputs
352
+
353
+
354
+ LLAMA_START_DOCSTRING = r"""
355
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
356
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
357
+ etc.)
358
+
359
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
360
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
361
+ and behavior.
362
+
363
+ Parameters:
364
+ config ([`LLaMAConfig`]):
365
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
366
+ load the weights associated with the model, only the configuration. Check out the
367
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
368
+ """
369
+
370
+
371
+ @add_start_docstrings(
372
+ "The bare OPT Model outputting raw hidden-states without any specific head on top.",
373
+ LLAMA_START_DOCSTRING,
374
+ )
375
+ class LLaMAPreTrainedModel(PreTrainedModel):
376
+ config_class = LLaMAConfig
377
+ base_model_prefix = "model"
378
+ supports_gradient_checkpointing = True
379
+ _no_split_modules = ["LLaMADecoderLayer"]
380
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
381
+
382
+ def _init_weights(self, module):
383
+ std = self.config.initializer_range
384
+ if isinstance(module, nn.Linear):
385
+ module.weight.data.normal_(mean=0.0, std=std)
386
+ if module.bias is not None:
387
+ module.bias.data.zero_()
388
+ elif isinstance(module, nn.Embedding):
389
+ module.weight.data.normal_(mean=0.0, std=std)
390
+ if module.padding_idx is not None:
391
+ module.weight.data[module.padding_idx].zero_()
392
+
393
+ def _set_gradient_checkpointing(self, module, value=False):
394
+ if isinstance(module, (LLaMADecoderLayer)):
395
+ module.gradient_checkpointing = value
396
+
397
+
398
+ LLAMA_INPUTS_DOCSTRING = r"""
399
+ Args:
400
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
401
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
402
+ it.
403
+
404
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
405
+ [`PreTrainedTokenizer.__call__`] for details.
406
+
407
+ [What are input IDs?](../glossary#input-ids)
408
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
409
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
410
+
411
+ - 1 for tokens that are **not masked**,
412
+ - 0 for tokens that are **masked**.
413
+
414
+ [What are attention masks?](../glossary#attention-mask)
415
+
416
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
417
+ [`PreTrainedTokenizer.__call__`] for details.
418
+
419
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
420
+ `past_key_values`).
421
+
422
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
423
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
424
+ information on the default strategy.
425
+
426
+ - 1 indicates the head is **not masked**,
427
+ - 0 indicates the head is **masked**.
428
+
429
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
430
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
431
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
432
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
433
+
434
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
435
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
436
+
437
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
438
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
439
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
440
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
441
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
442
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
443
+ model's internal embedding lookup matrix.
444
+ use_cache (`bool`, *optional*):
445
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
446
+ `past_key_values`).
447
+ output_attentions (`bool`, *optional*):
448
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
449
+ tensors for more detail.
450
+ output_hidden_states (`bool`, *optional*):
451
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
452
+ more detail.
453
+ return_dict (`bool`, *optional*):
454
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
455
+ """
456
+
457
+
458
+ @add_start_docstrings(
459
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
460
+ LLAMA_START_DOCSTRING,
461
+ )
462
+ class LLaMAModel(LLaMAPreTrainedModel):
463
+ """
464
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaMADecoderLayer`]
465
+
466
+ Args:
467
+ config: LLaMAConfig
468
+ """
469
+
470
+ def __init__(self, config: LLaMAConfig):
471
+ super().__init__(config)
472
+ self.padding_idx = config.pad_token_id
473
+ self.vocab_size = config.vocab_size
474
+
475
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
476
+ self.layers = nn.ModuleList([LLaMADecoderLayer(config) for _ in range(config.num_hidden_layers)])
477
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
478
+
479
+ self.gradient_checkpointing = False
480
+ # Initialize weights and apply final processing
481
+ self.post_init()
482
+
483
+ def get_input_embeddings(self):
484
+ return self.embed_tokens
485
+
486
+ def set_input_embeddings(self, value):
487
+ self.embed_tokens = value
488
+
489
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
490
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
491
+ # create causal mask
492
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
493
+ combined_attention_mask = None
494
+ if input_shape[-1] > 1:
495
+ combined_attention_mask = _make_causal_mask(
496
+ input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
497
+ ).to(inputs_embeds.device)
498
+
499
+ if attention_mask is not None:
500
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
501
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
502
+ inputs_embeds.device
503
+ )
504
+ combined_attention_mask = (
505
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
506
+ )
507
+
508
+ return combined_attention_mask
509
+
510
+ def forward(
511
+ self,
512
+ input_ids: torch.LongTensor = None,
513
+ attention_mask: Optional[torch.Tensor] = None,
514
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
515
+ inputs_embeds: Optional[torch.FloatTensor] = None,
516
+ use_cache: Optional[bool] = None,
517
+ output_attentions: Optional[bool] = None,
518
+ output_hidden_states: Optional[bool] = None,
519
+ return_dict: Optional[bool] = None,
520
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
521
+ r"""
522
+ Args:
523
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
524
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
525
+ provide it.
526
+
527
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
528
+ [`PreTrainedTokenizer.__call__`] for details.
529
+
530
+ [What are input IDs?](../glossary#input-ids)
531
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
532
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
533
+
534
+ - 1 for tokens that are **not masked**,
535
+ - 0 for tokens that are **masked**.
536
+
537
+ [What are attention masks?](../glossary#attention-mask)
538
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
539
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
540
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
541
+
542
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
543
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
544
+
545
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
546
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
547
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
548
+ use_cache (`bool`, *optional*):
549
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
550
+ `past_key_values`).
551
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
552
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
553
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
554
+ than the model's internal embedding lookup matrix.
555
+ output_attentions (`bool`, *optional*):
556
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
557
+ returned tensors for more detail.
558
+ output_hidden_states (`bool`, *optional*):
559
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
560
+ for more detail.
561
+ return_dict (`bool`, *optional*):
562
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
563
+ """
564
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
565
+ output_hidden_states = (
566
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
567
+ )
568
+
569
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
570
+
571
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
572
+
573
+ # retrieve input_ids and inputs_embeds
574
+ if input_ids is not None and inputs_embeds is not None:
575
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
576
+ elif input_ids is not None:
577
+ input_shape = input_ids.size()
578
+ input_ids = input_ids.view(-1, input_shape[-1])
579
+ elif inputs_embeds is not None:
580
+ input_shape = inputs_embeds.size()[:-1]
581
+ else:
582
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
583
+
584
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
585
+
586
+ if inputs_embeds is None:
587
+ inputs_embeds = self.embed_tokens(input_ids)
588
+
589
+ # embed positions
590
+ if attention_mask is None:
591
+ attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device)
592
+
593
+ attention_mask = self._prepare_decoder_attention_mask(
594
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
595
+ )
596
+
597
+ hidden_states = inputs_embeds
598
+
599
+ if self.gradient_checkpointing and self.training:
600
+ if use_cache:
601
+ logger.warning_once(
602
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
603
+ )
604
+ use_cache = False
605
+
606
+ # decoder layers
607
+ all_hidden_states = () if output_hidden_states else None
608
+ all_self_attns = () if output_attentions else None
609
+ next_decoder_cache = () if use_cache else None
610
+
611
+ for idx, decoder_layer in enumerate(self.layers):
612
+ if output_hidden_states:
613
+ all_hidden_states += (hidden_states,)
614
+
615
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
616
+
617
+ if self.gradient_checkpointing and self.training:
618
+
619
+ def create_custom_forward(module):
620
+ def custom_forward(*inputs):
621
+ # None for past_key_value
622
+ return module(*inputs, output_attentions, None)
623
+
624
+ return custom_forward
625
+
626
+ layer_outputs = torch.utils.checkpoint.checkpoint(
627
+ create_custom_forward(decoder_layer),
628
+ hidden_states,
629
+ attention_mask,
630
+ None,
631
+ )
632
+ else:
633
+ layer_outputs = decoder_layer(
634
+ hidden_states,
635
+ attention_mask=attention_mask,
636
+ past_key_value=past_key_value,
637
+ output_attentions=output_attentions,
638
+ use_cache=use_cache,
639
+ )
640
+
641
+ hidden_states = layer_outputs[0]
642
+
643
+ if use_cache:
644
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
645
+
646
+ if output_attentions:
647
+ all_self_attns += (layer_outputs[1],)
648
+
649
+ hidden_states = self.norm(hidden_states)
650
+
651
+ # add hidden states from the last decoder layer
652
+ if output_hidden_states:
653
+ all_hidden_states += (hidden_states,)
654
+
655
+ next_cache = next_decoder_cache if use_cache else None
656
+ if not return_dict:
657
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
658
+ return BaseModelOutputWithPast(
659
+ last_hidden_state=hidden_states,
660
+ past_key_values=next_cache,
661
+ hidden_states=all_hidden_states,
662
+ attentions=all_self_attns,
663
+ )
664
+
665
+
666
+ class LLaMAForCausalLM(LLaMAPreTrainedModel):
667
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
668
+
669
+ def __init__(self, config):
670
+ super().__init__(config)
671
+ self.model = LLaMAModel(config)
672
+
673
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
674
+
675
+ # Initialize weights and apply final processing
676
+ self.post_init()
677
+
678
+ def get_input_embeddings(self):
679
+ return self.model.embed_tokens
680
+
681
+ def set_input_embeddings(self, value):
682
+ self.model.embed_tokens = value
683
+
684
+ def get_output_embeddings(self):
685
+ return self.lm_head
686
+
687
+ def set_output_embeddings(self, new_embeddings):
688
+ self.lm_head = new_embeddings
689
+
690
+ def set_decoder(self, decoder):
691
+ self.model = decoder
692
+
693
+ def get_decoder(self):
694
+ return self.model
695
+
696
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
697
+ def forward(
698
+ self,
699
+ input_ids: torch.LongTensor = None,
700
+ attention_mask: Optional[torch.Tensor] = None,
701
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
702
+ inputs_embeds: Optional[torch.FloatTensor] = None,
703
+ labels: Optional[torch.LongTensor] = None,
704
+ use_cache: Optional[bool] = None,
705
+ output_attentions: Optional[bool] = None,
706
+ output_hidden_states: Optional[bool] = None,
707
+ return_dict: Optional[bool] = None,
708
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
709
+ r"""
710
+ Args:
711
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
712
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
713
+ provide it.
714
+
715
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
716
+ [`PreTrainedTokenizer.__call__`] for details.
717
+
718
+ [What are input IDs?](../glossary#input-ids)
719
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
721
+
722
+ - 1 for tokens that are **not masked**,
723
+ - 0 for tokens that are **masked**.
724
+
725
+ [What are attention masks?](../glossary#attention-mask)
726
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
727
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
728
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
729
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
730
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
731
+
732
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
733
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
734
+
735
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
736
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
737
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
738
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
739
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
740
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
741
+ than the model's internal embedding lookup matrix.
742
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
743
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
744
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
745
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
746
+ use_cache (`bool`, *optional*):
747
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
748
+ (see `past_key_values`).
749
+ output_attentions (`bool`, *optional*):
750
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
751
+ returned tensors for more detail.
752
+ output_hidden_states (`bool`, *optional*):
753
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
754
+ for more detail.
755
+ return_dict (`bool`, *optional*):
756
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
757
+
758
+ Returns:
759
+
760
+ Example:
761
+
762
+ ```python
763
+ >>> from transformers import AutoTokenizer, LLaMAForCausalLM
764
+
765
+ >>> model = LLaMAForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
766
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
767
+
768
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
769
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
770
+
771
+ >>> # Generate
772
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
773
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
774
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
775
+ ```"""
776
+
777
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
778
+ output_hidden_states = (
779
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
780
+ )
781
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
782
+
783
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
784
+ outputs = self.model(
785
+ input_ids=input_ids,
786
+ attention_mask=attention_mask,
787
+ past_key_values=past_key_values,
788
+ inputs_embeds=inputs_embeds,
789
+ use_cache=use_cache,
790
+ output_attentions=output_attentions,
791
+ output_hidden_states=output_hidden_states,
792
+ return_dict=return_dict,
793
+ )
794
+
795
+ hidden_states = outputs[0]
796
+ logits = self.lm_head(hidden_states)
797
+
798
+ loss = None
799
+ if labels is not None:
800
+ # move labels to correct device to enable model parallelism
801
+ labels = labels.to(logits.device)
802
+ # Compute loss in fp32 to match with mesh-tf version
803
+ # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
804
+ logits = logits.to(torch.float32)
805
+
806
+ # Shift so that tokens < n predict n
807
+ shift_logits = logits[..., :-1, :].contiguous()
808
+ shift_labels = labels[..., 1:].contiguous()
809
+ # Flatten the tokens
810
+ loss_fct = CrossEntropyLoss()
811
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
812
+
813
+ logits = logits.to(hidden_states.dtype)
814
+ loss = loss.to(hidden_states.dtype)
815
+
816
+ if not return_dict:
817
+ output = (logits,) + outputs[1:]
818
+ return (loss,) + output if loss is not None else output
819
+
820
+ return CausalLMOutputWithPast(
821
+ loss=loss,
822
+ logits=logits,
823
+ past_key_values=outputs.past_key_values,
824
+ hidden_states=outputs.hidden_states,
825
+ attentions=outputs.attentions,
826
+ )
827
+
828
+ def prepare_inputs_for_generation(
829
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
830
+ ):
831
+ if past_key_values:
832
+ input_ids = input_ids[:, -1:]
833
+
834
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
835
+ if inputs_embeds is not None and past_key_values is None:
836
+ model_inputs = {"inputs_embeds": inputs_embeds}
837
+ else:
838
+ model_inputs = {"input_ids": input_ids}
839
+
840
+ model_inputs.update(
841
+ {
842
+ "past_key_values": past_key_values,
843
+ "use_cache": kwargs.get("use_cache"),
844
+ "attention_mask": attention_mask,
845
+ }
846
+ )
847
+ return model_inputs
848
+
849
+ @staticmethod
850
+ def _reorder_cache(past_key_values, beam_idx):
851
+ reordered_past = ()
852
+ for layer_past in past_key_values:
853
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
854
+ return reordered_past
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70dd915d52aac155b19709f0669f3dec8ccdf418029898e069cd605c2c9e5a46
3
+ size 9976839242
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc4983aedd740c99ce32906a5515be80fce1650e3c14005422bcd90726c32b1
3
+ size 3500383715
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13477101568
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.12.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.13.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.14.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.15.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.16.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.17.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.18.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.19.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.2.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.20.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.21.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.22.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
189
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.23.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
193
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.24.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.25.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.26.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.27.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
244
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
245
+ "model.layers.28.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
246
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
247
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
248
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.29.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.3.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
273
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
275
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
276
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
277
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
278
+ "model.layers.30.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
279
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
280
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
281
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
282
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
283
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
284
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
285
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
286
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
287
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
288
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
289
+ "model.layers.31.self_attn.o_proj.bias": "pytorch_model-00002-of-00002.bin",
290
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
291
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
292
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
293
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
294
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.4.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.5.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.6.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
329
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
330
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
331
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
332
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
333
+ "model.layers.7.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
334
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
335
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
336
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
337
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
338
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
339
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
340
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
341
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
342
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
343
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
344
+ "model.layers.8.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
345
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
346
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
347
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
348
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
349
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
350
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
351
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
352
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
353
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
354
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
355
+ "model.layers.9.self_attn.o_proj.bias": "pytorch_model-00001-of-00002.bin",
356
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
357
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
358
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
359
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
360
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
361
+ }
362
+ }