--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - starsnatched/MemGPT-DPO - starsnatched/MemGPT-3 - starsnatched/MemGPT base_model: - starsnatched/MemGPT-DPO - starsnatched/MemGPT-3 - starsnatched/MemGPT --- # Memgpt-3x7b-MOE Memgpt-3x7b-MOE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [starsnatched/MemGPT-DPO](https://huggingface.co/starsnatched/MemGPT-DPO) * [starsnatched/MemGPT-3](https://huggingface.co/starsnatched/MemGPT-3) * [starsnatched/MemGPT](https://huggingface.co/starsnatched/MemGPT) ## 🧩 Configuration ```yaml base_model: liminerity/Memgpt-slerp-7b-5 gate_mode: hidden dtype: bfloat16 experts: - source_model: starsnatched/MemGPT-DPO positive_prompts: - "versatile" - "helpful" - "factual" - "integrated" - "adaptive" - "comprehensive" - "balanced" negative_prompts: - "specialized" - "narrow" - "focused" - "limited" - "specific" - source_model: starsnatched/MemGPT-3 positive_prompts: - "analytical" - "accurate" - "logical" - "knowledgeable" - "precise" - "calculate" - "compute" - "solve" - "work" - "python" - "javascript" - "programming" - "algorithm" - "tell me" - "assistant" negative_prompts: - "creative" - "abstract" - "imaginative" - "artistic" - "emotional" - "mistake" - "inaccurate" - source_model: starsnatched/MemGPT positive_prompts: - "instructive" - "clear" - "directive" - "helpful" - "informative" negative_prompts: - "exploratory" - "open-ended" - "narrative" - "speculative" - "artistic" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Memgpt-3x7b-MOE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```