Llamipa / parser_generate.py
Kqte's picture
Upload 4 files
67cb833 verified
raw
history blame
4.29 kB
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from datasets import load_dataset
from tqdm import tqdm
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
"/path/to/meta-llama3-8b/",
return_dict=True,
torch_dtype=torch.float16,
device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b/",add_eos_token=True)
tokenizer.pad_token_id = tokenizer.eos_token_id + 1
tokenizer.padding_side = "right"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, max_new_tokens=100)
test_dataset = load_dataset("json", data_files={'test':'/path/to/parser_test_moves_15.jsonl'})["test"]
def is_first_moves(sample):
answer = 0
slist = sample.split('\n')
if slist[0].startswith('Context: 0 <Buil> Mission has started.'):
struct = [i for i in slist if i.startswith('Structure:')]
rels = struct[0].split(':')[1].strip()
if len(rels) == 0:
answer = 1
return answer
def check_endpoints(struct, head):
"""
takes a struct string and a head int and returns only
the struct rels with sources that are >= head
"""
new_rels_list = []
new_rels = None
if struct:
rels = struct.split(' ')
for rel in rels:
if len(rel) > 0:
source = int(rel.split('(')[1].split(',')[0].strip())
if source >= head:
new_rels_list.append(rel)
if len(new_rels_list) > 0:
new_rels = ' '.join(new_rels_list)
return new_rels
def add_previous(sample, previous, predictions):
new_output = []
keep_str = None
#get head
slist = sample.split('\n')
head = int(slist[0].split('Context:')[1].split('<')[0].strip())
# check current structure
for s in slist:
if s.startswith('Structure:'):
new_structure = check_endpoints(previous, head)
if new_structure:
s = 'Structure: ' + new_structure + ' ' + predictions
keep_str = new_structure + ' ' + predictions
else:
s = 'Structure: ' + predictions
keep_str = predictions
new_output.append(s)
new_output_string = '\n'.join(new_output)
return keep_str, new_output_string
def format_gen(preds):
labels = ['COM','CONTR','CORR','QAP','ACK','ELAB','CLARIFQ','COND','CONTIN',
'RES','EXPL','QELAB','ALT','NARR','CONFQ','SEQ']
split_list = [st.strip() for st in preds.split(' ')]
clean_list = []
for a in split_list:
s_tuple = None
rel = None
try:
s = a.split('(')[1].split(')')[0].split(',')
r = a.split('(')[0].strip()
except IndexError:
print('split error one')
else:
try:
s_tuple = (int(s[0]), int(s[1]))
except IndexError:
print('split error two')
except ValueError:
print('value error three')
if r in labels:
#make sure the label is well-formed
rel = r
if rel != None and s_tuple != None:
clean_list.append(rel + '(' + str(s_tuple[0]) + ',' + str(s_tuple[1]) + ')')
clean_preds = ' '.join(clean_list)
return clean_preds
def formatting_prompts_func(example):
output_text = '<|begin_of_text|>Identify the discourse structure (DS) for the new turn in the following excerpt :\n' + example + '\n ### DS:'
return output_text
f = open("/path/to/val-output-file.txt","w")
new_generations = None
previous_generations = None
for datum in tqdm(test_dataset['sample']):
#figure out if it's a first example
if is_first_moves(datum):
text = formatting_prompts_func(datum)
previous_generations = None
else:
#need to make sure head edu and relations match up
update_prev, amended_text = add_previous(datum, previous_generations, new_generations)
previous_generations = update_prev
text = formatting_prompts_func(amended_text)
generated = pipe(text)[0]['generated_text']
print(generated, file=f)
new_generations = format_gen(generated.split('### DS:')[1])
f.close()