File size: 6,833 Bytes
071945c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8

# Copyright 2024 LY Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

from typing import Any, Literal, Optional

from transformers import PretrainedConfig


class CLYPConfig(PretrainedConfig):
    model_type = "clyp"

    def __init__(
        self,
        vision_encoder_config: Optional[dict] = None,
        text_encoder_config: Optional[dict] = None,
        itc_loss_config: Optional[dict] = None,
        learn_temperature: bool = True,
        temperature_init: float = 0.07,
        temperature_min: float = 0.01,
        temperature_max: float = 1000.0,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        vision_encoder_config = vision_encoder_config or {}
        text_encoder_config = text_encoder_config or {}
        self.vision_encoder_config = CLYPVisionEncoderConfig(**vision_encoder_config)
        self.text_encoder_config = CLYPTextEncoderConfig(**text_encoder_config)
        self.itc_loss_config = (
            CLYPLossConfig(**itc_loss_config) if itc_loss_config else None
        )
        self.learn_temperature = learn_temperature
        self.temperature_init = temperature_init
        self.temperature_min = temperature_min
        self.temperature_max = temperature_max

    def to_diff_dict(self) -> dict[str, Any]:
        serializable_config_dict = super().to_diff_dict()
        sub_serializable_config_dict = {
            "vision_encoder_config": _to_diff_dict(self.vision_encoder_config),
            "text_encoder_config": _to_diff_dict(self.text_encoder_config),
        }
        self.dict_torch_dtype_to_str(sub_serializable_config_dict)
        serializable_config_dict.update(sub_serializable_config_dict)
        return serializable_config_dict


class CLYPVisionEncoderConfig(PretrainedConfig):
    def __init__(
        self,
        backbone_config: Optional[dict] = None,
        pooler_config: Optional[dict] = None,
        neck_config: Optional[dict] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        backbone_config = backbone_config or {}
        pooler_config = pooler_config or {"input_type": "timm"}
        neck_config = neck_config or {}
        self.backbone_config = CLYPVisionBackboneConfig(**backbone_config)
        self.pooler_config = CLYPPoolerConfig(**pooler_config)
        self.neck_config = CLYPNeckConfig(**neck_config)

    def to_diff_dict(self) -> dict[str, Any]:
        serializable_config_dict = {
            "backbone_config": _to_diff_dict(self.backbone_config),
            "pooler_config": _to_diff_dict(self.pooler_config),
            "neck_config": _to_diff_dict(self.neck_config),
        }
        self.dict_torch_dtype_to_str(serializable_config_dict)
        return serializable_config_dict


class CLYPTextEncoderConfig(PretrainedConfig):
    def __init__(
        self,
        backbone_config: Optional[dict] = None,
        pooler_config: Optional[dict] = None,
        neck_config: Optional[dict] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        backbone_config = backbone_config or {}
        pooler_config = pooler_config or {"input_type": "huggingface"}
        neck_config = neck_config or {}
        self.backbone_config = CLYPTextBackboneConfig(**backbone_config)
        self.pooler_config = CLYPPoolerConfig(**pooler_config)
        self.neck_config = CLYPNeckConfig(**neck_config)

    def to_diff_dict(self) -> dict[str, Any]:
        serializable_config_dict = {
            "backbone_config": _to_diff_dict(self.backbone_config),
            "pooler_config": _to_diff_dict(self.pooler_config),
            "neck_config": _to_diff_dict(self.neck_config),
        }
        self.dict_torch_dtype_to_str(serializable_config_dict)
        return serializable_config_dict


class CLYPVisionBackboneConfig(PretrainedConfig):
    def __init__(
        self,
        model_name: str = "eva02_base_patch16_clip_224.merged2b",
        pretrained: bool = True,
        extra_kwargs: Optional[dict] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.model_name = model_name
        self.pretrained = pretrained
        self.extra_kwargs = extra_kwargs or {}


class CLYPTextBackboneConfig(PretrainedConfig):
    def __init__(
        self,
        model_name: str = "rinna/japanese-clip-vit-b-16",
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.model_name = model_name


class CLYPPoolerConfig(PretrainedConfig):
    def __init__(
        self,
        input_type: Literal["timm", "huggingface"] | None = None,
        return_patch_features: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.input_type = input_type
        self.return_patch_features = return_patch_features


class CLYPNeckConfig(PretrainedConfig):
    def __init__(
        self,
        in_channels: int = 768,
        out_channels: int = 512,
        bias: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.bias = bias


class CLYPLossConfig(PretrainedConfig):
    def __init__(
        self,
        learn_temperature: bool = True,
        init_temperature: float = 0.07,
        max_temperature: Optional[float] = None,
        min_temperature: Optional[float] = None,
        label_smoothing: float = 0.0,
        gather_with_grad: bool = True,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.learn_temperature = learn_temperature
        self.init_temperature = init_temperature
        self.max_temperature = max_temperature
        self.min_temperature = min_temperature
        self.label_smoothing = label_smoothing
        self.gather_with_grad = gather_with_grad


def _to_diff_dict(c: PretrainedConfig) -> dict:
    """Function to override PretrainedConfig.to_diff_dict()

    NOTE
    ----
    In transformers==4.38.1,
    PretrainedConfig.__repr__ may not be able to show configs that has some sub-configs
    """
    d = c.to_diff_dict()
    if "transformers_version" in d:
        d.pop("transformers_version")
    return d


if __name__ == "__main__":
    conf = CLYPConfig.from_pretrained("config.json")
    print(conf)