# Initialize classifier | |
from medimageinsightmodel import MedImageInsight | |
import base64 | |
classifier = MedImageInsight( | |
model_dir="2024.09.27", | |
vision_model_name="medimageinsigt-v1.0.0.pt", | |
language_model_name="language_model.pth" | |
) | |
def read_image(image_path): | |
with open(image_path, "rb") as f: | |
return f.read() | |
# Load model | |
classifier.load_model() | |
import urllib.request | |
image_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-1001.png" | |
image_path = "CXR145_IM-0290-1001.png" | |
urllib.request.urlretrieve(image_url, image_path) | |
print(f"Image downloaded to {image_path}") | |
image = base64.encodebytes(read_image(image_path)).decode("utf-8") | |
# Example inference | |
images = [image] | |
labels = ["normal", "Pneumonia", "unclear"] | |
#Zero-shot classification | |
results = classifier.predict(images, labels) | |
print(results) | |
#Image embeddings | |
results = classifier.encode(images = images) | |
print(results) | |
#Text embeddings | |
results = classifier.encode(texts = labels) | |
print(results) | |