################## # Trainer settings ################## TASK: UniCLTask NAME: 'Example Eval Configuration' SAVE_TIMER_LOG: true # TUTORIAL STEP 1: CHOOSE SAVE DIR SAVE_DIR: '' LOG_EVERY: 10 LOGLEVEL_OVERRIDE: INFO LOG_GPU_MEM: true RESUME: False RESET_DATA_LOADER: false FP16: true ZERO_STAGE: 0 DEEPSPEED: false # ZERO_STAGE: 1 AMP: PYTORCH # USE_APEX_DDP: false # USE_APEX_AMP: false # USE_HIT: false FIND_UNUSED_PARAMETERS: false SAVE_PER_OPTIM_STEPS: 500 EVAL_PER_OPTIM_STEPS: 250 EVAL_AT_START: False # SAVE_PER_UPDATE_NUM: -1 # EVAL_PER_UPDATE_NUM: 0 # 0: do evaluation when saving checkpoint, -1: don't do evaluation NO_AUTO_LR_SCALING: true GRAD_CLIPPING: 1.0 #0.07 SET_SAMPLER_EPOCH: true DONT_LOAD_MODEL: true user_dir: "./MainzVision" # lower case due to it is used in mainz as such ################## # Task settings ################## VERBOSE: true WORKERS: 6 PIN_MEMORY: true IMAGE_ENCODER: NAME: davit_v1 NUM_CLASSES: 0 #IMAGE_SIZE: [384, 384] IMAGE_SIZE: [480, 480] LOAD_PRETRAINED: true PRETRAINED: '' PRETRAINED_LAYERS: '*' IMAGE_MEAN: [0.485, 0.456, 0.406] IMAGE_STD: [0.229, 0.224, 0.225] SPEC: DROP_RATE: 0.1 DROP_PATH_RATE: 0.2 PATCH_SIZE: [7, 3, 3, 3] PATCH_STRIDE: [4, 2, 2, 2] PATCH_PADDING: [3, 1, 1, 1] PATCH_PRENORM: [false, true, true, true] DIM_EMBED: [256, 512, 1024, 2048] NUM_HEADS: [8, 16, 32, 64] NUM_GROUPS: [8, 16, 32, 64] DEPTHS: [1, 1, 9, 1] WINDOW_SIZE: 12 ENABLE_CHECKPOINT: true LANG_ENCODER: NAME: transformer LOAD_PRETRAINED: false PRETRAINED: '' PRETRAINED_LAYERS: '*' TOKENIZER: clip CONTEXT_LENGTH: 77 WIDTH: 1024 HEADS: 16 LAYERS: 16 AUTOGRESSIVE: false UNICL_MODEL: DIM_PROJECTION: 1024 GATHER_TENSORS: true LOAD_PRETRAINED: true # TUTORIAL STEP 2: CHOOSE MODEL PATH PRETRAINED: '' PRETRAINED_LAYERS: '*' AUG: MIXUP_PROB: 0.0 MIXUP: 0.8 MIXCUT: 1.0 MIXCUT_MINMAX: [] MIXUP_SWITCH_PROB: 0.5 MIXUP_MODE: 'batch' SCALE: [0.8, 1.0] RATIO: [0.75, 1.3333333] INTERPOLATION: 'bicubic' TORCHVISION_AUG: AUTO_AUGMENT: ta_wide RE_PROB: 0.25 HFLIP: 0.0 VFLIP: 0.0 LOSS: LOSS: UniCL DATASET: DATASET: 'image_text_pairs_v2' TEXT_FORMAT: 'json' ROOT: '' TRAIN_SET: 'mimic_cxr_v2-chestxray14-chexpertv4-irma2009_v2-rsnaboneage-mura-bingmedicalfewshot' DATA_FORMAT: 'tsv' SAMPLER: 'default' LOADER: 'default' TOKEN_FILE: '' #PROMPT_ENGINEERING: False #SAMPLER: 'chunk' #LOADER: 'azcopy' #TOKEN_FILE: 'cliptrainingpairs.txt' #TEST_SET: 'MarsAtrain' # TUTORIAL STEP 3: CHOOSE ALL BELOW EVAL PATHS (THESE ARE ALL OPTIONAL EXTRA EVALS) # Note how one eval is ZIP format and the other is TSV format. EVALDATASET_LTCXR_S100_N100_TEXT_CLASSIFIER: TEXT_FORMAT: json FORMAT: 'zip' SPLIT: 'NIH-CXR-LT' ZIP_FILE: '' ZIP_MAP_FILE: '' LABEL_FILE: '' IMAGE_TSV: '' TEXT_TSV: '' CWEIGHT_FILE: '' ZS_MODE: 2 ZS_WEIGHT: 1.0 KNN: 100 # CLASSIFICATION_SETS: ['NIH-CXR-LT'] # NUM_CLASSES: [20] # TUTORIAL STEP 4: SET THE DEFAULT ZEROSHOT EVAL (THIS IS THE MANDATORY EVAL) ZEROSHOT_EVAL_DATASET: FORMAT: 'zip' SPLIT: 'NIH-CXR-LT' ZIP_FILE: '' ZIP_MAP_FILE: '' LABEL_FILE: '' EVALUATION_SPLITS: ['cls-zeroshot-eval'] TEST: BATCH_SIZE_PER_GPU: 8 MODEL_FILE: '' CENTER_CROP: false TRAIN: BATCH_SIZE_TOTAL: 1024 BATCH_SIZE_PER_GPU: 16 SHUFFLE: true WEIGHT_SMOOTHING: decay: 0.999 use_cpu: False eval_smoothed_weight: True START_LEARNING_RATE: 0.00001 # MAX_NUM_EPOCHS: 2 MAX_NUM_EPOCHS: 100 OPTIMIZER: AdamW # adam OPTIMIZER_PARAMS: weight_decay: 0.2 #0.1 CUSTOMIZED_PARAMS_CONF: NO_WEIGHT_DECAY_MODULES: ['dw', 'norm'] WEIGHT_DECAY_PATTERNS: "\\.bias$": 0.0 "logit_scale": 0.0 "positional_embedding": 0.0 "token_embedding": 0.0 LR_SCHEDULER: TimmScheduler LR_SCHEDULER_PARAMS: sched: cosine warmup_steps: 5 warmup_lr: 0.000000001 min_lr: 0.000000001 # GRADIENT_ACCUMULATE_STEP will be updated by: # BATCH_SIZE_TOTAL // (BATCH_SIZE_PER_GPU * world_size) GRADIENT_ACCUMULATE_STEP: -1