Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1310.87 +/- 62.72
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cb44204dfd03a0052439710820ab114034a42865a2b15ffaf4875f9f5d5ccb1
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fec06f0ab80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec06f0ac10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec06f0aca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec06f0ad30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fec06f0adc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fec06f0ae50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec06f0aee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec06f0af70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fec06f0e040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec06f0e0d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec06f0e160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec06f0e1f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fec06f0c680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2500000,
|
63 |
+
"_total_timesteps": 2500000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679255944896634850,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN0y4T7RnJg+9FATP5ED5j5yUPG+a5GUPlq9fz5jMVi/aaeUPxeg1b1pjVQ/oa2bPR6RSD8LY/K/LwEBP7wy579iLQk+rCAhv/QLsD5VFfw97jyuP40mUb9Wcwg/M6VRv+p3NT/qTH4+v6EIP/E3Z7+SRgW/9MIuPkUgCT+kRpy/47hxPyOqAz8EXei+Roz2voII976XhSG/V1zUv1XhyT3ZjY6/MFR6PyVDKT+4eJG7ZOolPvlnM0DbOxY/0td6v7hxDj/MjCo+mZWQP7QBsT5FkrS/6kx+PrXT778AuI0/vjoNv6zKbj8y3Ro/goSlv151vz4H0SE+byh3vz+btT4KgbO/QXjMP5WIEb8F90Y/ar+lvqcJd0Dbyck+8EafPmrrkz9g0BJA/2t1v2gVYj++gpe+7BqHQN8tUT4mitK/6nc1P+pMfj610++/8Tdnv1MU4b7ocsY9k9sBP2hTFz+KXrc+9MvGPSstLT5L46q9ZPQGPt0en789S0m/gQH1v2NVWr22Q4C+4Y5lPk/CuT/5o18/D3/uP0VtKj8riAw8vPTiPjrAA78GnwQ/+NlrP0WStL/qTH4+tdPvvwC4jT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEnYI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPWSdPQAAAAA/AOi/AAAAAFM52T0AAAAAbUMAQAAAAADzvPM9AAAAACGm/z8AAAAAioyVvAAAAACAmu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7OftgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0CB70AAAAAeL7kvwAAAAApDwm+AAAAAPia7z8AAAAAtCBevAAAAAA+F/k/AAAAALF3vz0AAAAA8o7zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ioLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIApRpC9AAAAAOU99b8AAAAAz4gRvgAAAAADdfc/AAAAAAFAzL0AAAAAvKfZPwAAAAAPHxo9AAAAAH3E978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4AUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9+TWvAAAAACMJADAAAAAACjxwr0AAAAAMwjzPwAAAACboaW8AAAAAO5pAEAAAAAAY20gPQAAAADl0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPMwgU1yeaMAWyUTegDjAF0lEdAsMfoV8CxNnV9lChoBkdAk28oVmBe5WgHTegDaAhHQLDIYoybhFV1fZQoaAZHQJOKxky1uzhoB03oA2gIR0CwyxxLwnYydX2UKGgGR0CT247XQMQVaAdN6ANoCEdAsMtepVCHAXV9lChoBkdAlB4vYzzmOmgHTegDaAhHQLDPYdBBzFN1fZQoaAZHQJRZ3Qb+98JoB03oA2gIR0Cw0CCyMUAUdX2UKGgGR0CT/TNEw35vaAdN6ANoCEdAsNMfBSDRMXV9lChoBkdAk7rdmthd+2gHTegDaAhHQLDTYjTrmhd1fZQoaAZHQJSrsaAFxGVoB03oA2gIR0Cw1iFsk6cRdX2UKGgGR0CTy4U4JeE7aAdN6ANoCEdAsNacIrvsq3V9lChoBkdAlGJvbO/tY2gHTegDaAhHQLDZUNm16Vt1fZQoaAZHQJOGaFcpsoFoB03oA2gIR0Cw2ZPQ8fV7dX2UKGgGR0CVW5AHE/B4aAdN6ANoCEdAsNz0UAT7EnV9lChoBkdAk+ipLAYYSGgHTegDaAhHQLDdsaTwDvF1fZQoaAZHQJOp0IC2c8VoB03oA2gIR0Cw4UE4WDYidX2UKGgGR0CSza+wkgOjaAdN6ANoCEdAsOGE6wMYuXV9lChoBkdAkxpu9vjwQWgHTegDaAhHQLDkQ7sv7Fd1fZQoaAZHQJQXvEGZ/kNoB03oA2gIR0Cw5MDN2TxHdX2UKGgGR0CTvANsWO6vaAdN6ANoCEdAsOeBfzBhyHV9lChoBkdAjfqFvZRKpWgHTegDaAhHQLDnxTcIqsl1fZQoaAZHQJFosyO7xutoB03oA2gIR0Cw6rgSJ0nxdX2UKGgGR0CSgrwm3OObaAdN6ANoCEdAsOtnKQq7RXV9lChoBkdAk3R+Jxeb/mgHTegDaAhHQLDvj5kbxVh1fZQoaAZHQJOl4J9iMHdoB03oA2gIR0Cw79bbg0j1dX2UKGgGR0CRKBxc3VCpaAdN6ANoCEdAsPKvC53C9HV9lChoBkdAkimFolD4QGgHTegDaAhHQLDzLHJ9y951fZQoaAZHQJN377XQMQVoB03oA2gIR0Cw9eYaYNRWdX2UKGgGR0CTgCQ5WBBiaAdN6ANoCEdAsPYpBjWkJ3V9lChoBkdAkt0vGlyimGgHTegDaAhHQLD493np0Op1fZQoaAZHQJIugoLG7z1oB03oA2gIR0Cw+XhttQ9BdX2UKGgGR0CQPZunuRcNaAdN6ANoCEdAsP2AmlZX+3V9lChoBkdAkoWeKjzqbGgHTegDaAhHQLD96JbdJrd1fZQoaAZHQJM7rX2/SIBoB03oA2gIR0CxAQWhVU++dX2UKGgGR0CS+xj4593KaAdN6ANoCEdAsQGEUFjd6HV9lChoBkdAkr6jDjzZpWgHTegDaAhHQLEEP23azu51fZQoaAZHQJF89fD1oQFoB03oA2gIR0CxBIDIaLn+dX2UKGgGR0CTK4SWJJoTaAdN6ANoCEdAsQdIOYplSXV9lChoBkdAkkm6bvw3HmgHTegDaAhHQLEHxjnV5KR1fZQoaAZHQJKM8371qWVoB03oA2gIR0CxCyCtq59WdX2UKGgGR0CRfInpSrHVaAdN6ANoCEdAsQuLu+h4+3V9lChoBkfAPqMmnfl6q2gHS35oCEdAsQxdGhEjPnV9lChoBkdAkRnvY8Md92gHTegDaAhHQLEPTvQ4S6F1fZQoaAZHQJEIgyHmA9VoB03oA2gIR0CxD8xmwqy4dX2UKGgGR8A/Omthd+ocaAdLhmgIR0CxEJ7e2uxKdX2UKGgGR0CQhgPTodMkaAdN6ANoCEdAsRLA/4ZdfXV9lChoBkdAkjPMRL9MsmgHTegDaAhHQLETRIqslsx1fZQoaAZHQJFtFi+cpb5oB03oA2gIR0CxFYTCUHIIdX2UKGgGR0CSmvRYzSCwaAdN6ANoCEdAsRba1+iJwnV9lChoBkdAkd6bDhtLtmgHTegDaAhHQLEZWfGdZq51fZQoaAZHQJJyxeJHiFVoB03oA2gIR0CxGhfEsJ6ZdX2UKGgGR0CScmrHEMspaAdN6ANoCEdAsR2QCxNZeXV9lChoBkdAkmSNOVPepGgHTegDaAhHQLEe5An2Iwd1fZQoaAZHQJMYc/zJ6ppoB03oA2gIR0CxIQHGGVRldX2UKGgGR0CSGMVxjriVaAdN6ANoCEdAsSGF2U0N0HV9lChoBkdAj5fwpF1B+mgHTegDaAhHQLEjy9uxbB51fZQoaAZHQJL+su8K5TZoB03oA2gIR0CxJRzmbLEDdX2UKGgGR0CRLT4EOiFkaAdN6ANoCEdAsSc/uRcNY3V9lChoBkdAjNkxekYXPGgHTegDaAhHQLEn7WVNYbN1fZQoaAZHQJLpouJ1q35oB03oA2gIR0CxK0wpe/pMdX2UKGgGR0CSmL+nIhhZaAdN6ANoCEdAsS0vxFy7w3V9lChoBkdAlKP6r/82rGgHTegDaAhHQLEvX1tfoid1fZQoaAZHQJI2mP0Zm7JoB03oA2gIR0CxL+bowEhadX2UKGgGR0CShpHYpUgkaAdN6ANoCEdAsTI3BqKxcHV9lChoBkdAk51o7FKkEmgHTegDaAhHQLEziiO/+Kl1fZQoaAZHQJLM0Bo24utoB03oA2gIR0CxNb04BFNMdX2UKGgGR0CTWs2AoXsPaAdN6ANoCEdAsTZA5hjOLXV9lChoBkdAk0vFTefqYGgHTegDaAhHQLE5PHRkVet1fZQoaAZHQJLWpNrTH81oB03oA2gIR0CxO1LRa5f/dX2UKGgGR0CRvFCNjslcaAdN6ANoCEdAsT3BI5HVgHV9lChoBkdAkk80J4SpSGgHTegDaAhHQLE+Q8DSw4d1fZQoaAZHQJPRJCw8nu1oB03oA2gIR0CxQJlJDmbLdX2UKGgGR0CUgQI7vG6xaAdN6ANoCEdAsUHrOlfqo3V9lChoBkdAkvnT0xubZ2gHTegDaAhHQLFECL9MsYl1fZQoaAZHQJTncybhFVloB03oA2gIR0CxRIwsoUi7dX2UKGgGR0CU5vbhWHUMaAdN6ANoCEdAsUcblA/s3XV9lChoBkdAk5u7AtWdVmgHTegDaAhHQLFJFgRbr1N1fZQoaAZHQHqXdbX6InBoB03oA2gIR0CxTB3b212JdX2UKGgGR0CUX6ZuQ6p6aAdN6ANoCEdAsUymu4gA63V9lChoBkdAlFmkOqebu2gHTegDaAhHQLFO5WO6unx1fZQoaAZHQJNz2F6AvtdoB03oA2gIR0CxUEEm+j/NdX2UKGgGR0CUEdG5+YtyaAdN6ANoCEdAsVJvViF0xXV9lChoBkdAk2c29g4OtmgHTegDaAhHQLFS9Pgeii91fZQoaAZHQJH7Z5IH1OFoB03oA2gIR0CxVUU7CBPLdX2UKGgGR0CSQKMVk+X7aAdN6ANoCEdAsVcRaNdZ73V9lChoBkdAkkdD1GsmwGgHTegDaAhHQLFaYYO2AoZ1fZQoaAZHQJJywtQKrrBoB03oA2gIR0CxWxEeyRjjdX2UKGgGR0CTDInl4keIaAdN6ANoCEdAsV1Nnxri2nV9lChoBkdAfUMwHJLdvmgHTegDaAhHQLFeossQNCt1fZQoaAZHQI+aE3n6l+FoB03oA2gIR0CxYMTCUHIIdX2UKGgGR0CSl54+KTB7aAdN6ANoCEdAsWFKlJpWWHV9lChoBkdAkLDZzDGcWmgHTegDaAhHQLFji7e2uxN1fZQoaAZHQJHwkpuuRtBoB03oA2gIR0CxZOc+RoysdX2UKGgGR0CR0aZQYUFjaAdN6ANoCEdAsWgKcG1QZXV9lChoBkdAkupS0ngHeWgHTegDaAhHQLFo2uYx+KF1fZQoaAZHQJDxHns9jgBoB03oA2gIR0Cxa5smfGuLdX2UKGgGR0CR2OJqIrOJaAdN6ANoCEdAsWz0p3HJcXV9lChoBkdAkLqL2USqVGgHTegDaAhHQLFvFrCWNWF1fZQoaAZHQJLW6veP7vZoB03oA2gIR0Cxb5p+6RQrdX2UKGgGR0CStMf9gnc+aAdN6ANoCEdAsXHkTBZZCHV9lChoBkdAkt7vBi1Aq2gHTegDaAhHQLFzMQEZBLR1ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 78125,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d48de3e2d96946fd16687636ede08096bbcfaed52ef8895115a0763c8925d869
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f35265796a88f9d2cee1a1077f21202d1dfb98e71519f7735b26037ea5d549fb
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec06f0ab80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec06f0ac10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec06f0aca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec06f0ad30>", "_build": "<function ActorCriticPolicy._build at 0x7fec06f0adc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec06f0ae50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec06f0aee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec06f0af70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec06f0e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec06f0e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec06f0e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec06f0e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec06f0c680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679255944896634850, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN0y4T7RnJg+9FATP5ED5j5yUPG+a5GUPlq9fz5jMVi/aaeUPxeg1b1pjVQ/oa2bPR6RSD8LY/K/LwEBP7wy579iLQk+rCAhv/QLsD5VFfw97jyuP40mUb9Wcwg/M6VRv+p3NT/qTH4+v6EIP/E3Z7+SRgW/9MIuPkUgCT+kRpy/47hxPyOqAz8EXei+Roz2voII976XhSG/V1zUv1XhyT3ZjY6/MFR6PyVDKT+4eJG7ZOolPvlnM0DbOxY/0td6v7hxDj/MjCo+mZWQP7QBsT5FkrS/6kx+PrXT778AuI0/vjoNv6zKbj8y3Ro/goSlv151vz4H0SE+byh3vz+btT4KgbO/QXjMP5WIEb8F90Y/ar+lvqcJd0Dbyck+8EafPmrrkz9g0BJA/2t1v2gVYj++gpe+7BqHQN8tUT4mitK/6nc1P+pMfj610++/8Tdnv1MU4b7ocsY9k9sBP2hTFz+KXrc+9MvGPSstLT5L46q9ZPQGPt0en789S0m/gQH1v2NVWr22Q4C+4Y5lPk/CuT/5o18/D3/uP0VtKj8riAw8vPTiPjrAA78GnwQ/+NlrP0WStL/qTH4+tdPvvwC4jT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEnYI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPWSdPQAAAAA/AOi/AAAAAFM52T0AAAAAbUMAQAAAAADzvPM9AAAAACGm/z8AAAAAioyVvAAAAACAmu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7OftgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0CB70AAAAAeL7kvwAAAAApDwm+AAAAAPia7z8AAAAAtCBevAAAAAA+F/k/AAAAALF3vz0AAAAA8o7zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ioLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIApRpC9AAAAAOU99b8AAAAAz4gRvgAAAAADdfc/AAAAAAFAzL0AAAAAvKfZPwAAAAAPHxo9AAAAAH3E978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4AUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9+TWvAAAAACMJADAAAAAACjxwr0AAAAAMwjzPwAAAACboaW8AAAAAO5pAEAAAAAAY20gPQAAAADl0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPMwgU1yeaMAWyUTegDjAF0lEdAsMfoV8CxNnV9lChoBkdAk28oVmBe5WgHTegDaAhHQLDIYoybhFV1fZQoaAZHQJOKxky1uzhoB03oA2gIR0CwyxxLwnYydX2UKGgGR0CT247XQMQVaAdN6ANoCEdAsMtepVCHAXV9lChoBkdAlB4vYzzmOmgHTegDaAhHQLDPYdBBzFN1fZQoaAZHQJRZ3Qb+98JoB03oA2gIR0Cw0CCyMUAUdX2UKGgGR0CT/TNEw35vaAdN6ANoCEdAsNMfBSDRMXV9lChoBkdAk7rdmthd+2gHTegDaAhHQLDTYjTrmhd1fZQoaAZHQJSrsaAFxGVoB03oA2gIR0Cw1iFsk6cRdX2UKGgGR0CTy4U4JeE7aAdN6ANoCEdAsNacIrvsq3V9lChoBkdAlGJvbO/tY2gHTegDaAhHQLDZUNm16Vt1fZQoaAZHQJOGaFcpsoFoB03oA2gIR0Cw2ZPQ8fV7dX2UKGgGR0CVW5AHE/B4aAdN6ANoCEdAsNz0UAT7EnV9lChoBkdAk+ipLAYYSGgHTegDaAhHQLDdsaTwDvF1fZQoaAZHQJOp0IC2c8VoB03oA2gIR0Cw4UE4WDYidX2UKGgGR0CSza+wkgOjaAdN6ANoCEdAsOGE6wMYuXV9lChoBkdAkxpu9vjwQWgHTegDaAhHQLDkQ7sv7Fd1fZQoaAZHQJQXvEGZ/kNoB03oA2gIR0Cw5MDN2TxHdX2UKGgGR0CTvANsWO6vaAdN6ANoCEdAsOeBfzBhyHV9lChoBkdAjfqFvZRKpWgHTegDaAhHQLDnxTcIqsl1fZQoaAZHQJFosyO7xutoB03oA2gIR0Cw6rgSJ0nxdX2UKGgGR0CSgrwm3OObaAdN6ANoCEdAsOtnKQq7RXV9lChoBkdAk3R+Jxeb/mgHTegDaAhHQLDvj5kbxVh1fZQoaAZHQJOl4J9iMHdoB03oA2gIR0Cw79bbg0j1dX2UKGgGR0CRKBxc3VCpaAdN6ANoCEdAsPKvC53C9HV9lChoBkdAkimFolD4QGgHTegDaAhHQLDzLHJ9y951fZQoaAZHQJN377XQMQVoB03oA2gIR0Cw9eYaYNRWdX2UKGgGR0CTgCQ5WBBiaAdN6ANoCEdAsPYpBjWkJ3V9lChoBkdAkt0vGlyimGgHTegDaAhHQLD493np0Op1fZQoaAZHQJIugoLG7z1oB03oA2gIR0Cw+XhttQ9BdX2UKGgGR0CQPZunuRcNaAdN6ANoCEdAsP2AmlZX+3V9lChoBkdAkoWeKjzqbGgHTegDaAhHQLD96JbdJrd1fZQoaAZHQJM7rX2/SIBoB03oA2gIR0CxAQWhVU++dX2UKGgGR0CS+xj4593KaAdN6ANoCEdAsQGEUFjd6HV9lChoBkdAkr6jDjzZpWgHTegDaAhHQLEEP23azu51fZQoaAZHQJF89fD1oQFoB03oA2gIR0CxBIDIaLn+dX2UKGgGR0CTK4SWJJoTaAdN6ANoCEdAsQdIOYplSXV9lChoBkdAkkm6bvw3HmgHTegDaAhHQLEHxjnV5KR1fZQoaAZHQJKM8371qWVoB03oA2gIR0CxCyCtq59WdX2UKGgGR0CRfInpSrHVaAdN6ANoCEdAsQuLu+h4+3V9lChoBkfAPqMmnfl6q2gHS35oCEdAsQxdGhEjPnV9lChoBkdAkRnvY8Md92gHTegDaAhHQLEPTvQ4S6F1fZQoaAZHQJEIgyHmA9VoB03oA2gIR0CxD8xmwqy4dX2UKGgGR8A/Omthd+ocaAdLhmgIR0CxEJ7e2uxKdX2UKGgGR0CQhgPTodMkaAdN6ANoCEdAsRLA/4ZdfXV9lChoBkdAkjPMRL9MsmgHTegDaAhHQLETRIqslsx1fZQoaAZHQJFtFi+cpb5oB03oA2gIR0CxFYTCUHIIdX2UKGgGR0CSmvRYzSCwaAdN6ANoCEdAsRba1+iJwnV9lChoBkdAkd6bDhtLtmgHTegDaAhHQLEZWfGdZq51fZQoaAZHQJJyxeJHiFVoB03oA2gIR0CxGhfEsJ6ZdX2UKGgGR0CScmrHEMspaAdN6ANoCEdAsR2QCxNZeXV9lChoBkdAkmSNOVPepGgHTegDaAhHQLEe5An2Iwd1fZQoaAZHQJMYc/zJ6ppoB03oA2gIR0CxIQHGGVRldX2UKGgGR0CSGMVxjriVaAdN6ANoCEdAsSGF2U0N0HV9lChoBkdAj5fwpF1B+mgHTegDaAhHQLEjy9uxbB51fZQoaAZHQJL+su8K5TZoB03oA2gIR0CxJRzmbLEDdX2UKGgGR0CRLT4EOiFkaAdN6ANoCEdAsSc/uRcNY3V9lChoBkdAjNkxekYXPGgHTegDaAhHQLEn7WVNYbN1fZQoaAZHQJLpouJ1q35oB03oA2gIR0CxK0wpe/pMdX2UKGgGR0CSmL+nIhhZaAdN6ANoCEdAsS0vxFy7w3V9lChoBkdAlKP6r/82rGgHTegDaAhHQLEvX1tfoid1fZQoaAZHQJI2mP0Zm7JoB03oA2gIR0CxL+bowEhadX2UKGgGR0CShpHYpUgkaAdN6ANoCEdAsTI3BqKxcHV9lChoBkdAk51o7FKkEmgHTegDaAhHQLEziiO/+Kl1fZQoaAZHQJLM0Bo24utoB03oA2gIR0CxNb04BFNMdX2UKGgGR0CTWs2AoXsPaAdN6ANoCEdAsTZA5hjOLXV9lChoBkdAk0vFTefqYGgHTegDaAhHQLE5PHRkVet1fZQoaAZHQJLWpNrTH81oB03oA2gIR0CxO1LRa5f/dX2UKGgGR0CRvFCNjslcaAdN6ANoCEdAsT3BI5HVgHV9lChoBkdAkk80J4SpSGgHTegDaAhHQLE+Q8DSw4d1fZQoaAZHQJPRJCw8nu1oB03oA2gIR0CxQJlJDmbLdX2UKGgGR0CUgQI7vG6xaAdN6ANoCEdAsUHrOlfqo3V9lChoBkdAkvnT0xubZ2gHTegDaAhHQLFECL9MsYl1fZQoaAZHQJTncybhFVloB03oA2gIR0CxRIwsoUi7dX2UKGgGR0CU5vbhWHUMaAdN6ANoCEdAsUcblA/s3XV9lChoBkdAk5u7AtWdVmgHTegDaAhHQLFJFgRbr1N1fZQoaAZHQHqXdbX6InBoB03oA2gIR0CxTB3b212JdX2UKGgGR0CUX6ZuQ6p6aAdN6ANoCEdAsUymu4gA63V9lChoBkdAlFmkOqebu2gHTegDaAhHQLFO5WO6unx1fZQoaAZHQJNz2F6AvtdoB03oA2gIR0CxUEEm+j/NdX2UKGgGR0CUEdG5+YtyaAdN6ANoCEdAsVJvViF0xXV9lChoBkdAk2c29g4OtmgHTegDaAhHQLFS9Pgeii91fZQoaAZHQJH7Z5IH1OFoB03oA2gIR0CxVUU7CBPLdX2UKGgGR0CSQKMVk+X7aAdN6ANoCEdAsVcRaNdZ73V9lChoBkdAkkdD1GsmwGgHTegDaAhHQLFaYYO2AoZ1fZQoaAZHQJJywtQKrrBoB03oA2gIR0CxWxEeyRjjdX2UKGgGR0CTDInl4keIaAdN6ANoCEdAsV1Nnxri2nV9lChoBkdAfUMwHJLdvmgHTegDaAhHQLFeossQNCt1fZQoaAZHQI+aE3n6l+FoB03oA2gIR0CxYMTCUHIIdX2UKGgGR0CSl54+KTB7aAdN6ANoCEdAsWFKlJpWWHV9lChoBkdAkLDZzDGcWmgHTegDaAhHQLFji7e2uxN1fZQoaAZHQJHwkpuuRtBoB03oA2gIR0CxZOc+RoysdX2UKGgGR0CR0aZQYUFjaAdN6ANoCEdAsWgKcG1QZXV9lChoBkdAkupS0ngHeWgHTegDaAhHQLFo2uYx+KF1fZQoaAZHQJDxHns9jgBoB03oA2gIR0Cxa5smfGuLdX2UKGgGR0CR2OJqIrOJaAdN6ANoCEdAsWz0p3HJcXV9lChoBkdAkLqL2USqVGgHTegDaAhHQLFvFrCWNWF1fZQoaAZHQJLW6veP7vZoB03oA2gIR0Cxb5p+6RQrdX2UKGgGR0CStMf9gnc+aAdN6ANoCEdAsXHkTBZZCHV9lChoBkdAkt7vBi1Aq2gHTegDaAhHQLFzMQEZBLR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (987 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1310.8729015885851, "std_reward": 62.71574755071787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T21:21:13.883080"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8937511af810bbcb51c7043fd58a5a6ec9c3cce56c13338b8087f551a0cdfede
|
3 |
+
size 2136
|