lipee commited on
Commit
1a88320
1 Parent(s): dcf90c2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1310.87 +/- 62.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cb44204dfd03a0052439710820ab114034a42865a2b15ffaf4875f9f5d5ccb1
3
+ size 129261
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec06f0ab80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec06f0ac10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec06f0aca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec06f0ad30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fec06f0adc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fec06f0ae50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec06f0aee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec06f0af70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fec06f0e040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec06f0e0d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec06f0e160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec06f0e1f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fec06f0c680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2500000,
63
+ "_total_timesteps": 2500000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679255944896634850,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN0y4T7RnJg+9FATP5ED5j5yUPG+a5GUPlq9fz5jMVi/aaeUPxeg1b1pjVQ/oa2bPR6RSD8LY/K/LwEBP7wy579iLQk+rCAhv/QLsD5VFfw97jyuP40mUb9Wcwg/M6VRv+p3NT/qTH4+v6EIP/E3Z7+SRgW/9MIuPkUgCT+kRpy/47hxPyOqAz8EXei+Roz2voII976XhSG/V1zUv1XhyT3ZjY6/MFR6PyVDKT+4eJG7ZOolPvlnM0DbOxY/0td6v7hxDj/MjCo+mZWQP7QBsT5FkrS/6kx+PrXT778AuI0/vjoNv6zKbj8y3Ro/goSlv151vz4H0SE+byh3vz+btT4KgbO/QXjMP5WIEb8F90Y/ar+lvqcJd0Dbyck+8EafPmrrkz9g0BJA/2t1v2gVYj++gpe+7BqHQN8tUT4mitK/6nc1P+pMfj610++/8Tdnv1MU4b7ocsY9k9sBP2hTFz+KXrc+9MvGPSstLT5L46q9ZPQGPt0en789S0m/gQH1v2NVWr22Q4C+4Y5lPk/CuT/5o18/D3/uP0VtKj8riAw8vPTiPjrAA78GnwQ/+NlrP0WStL/qTH4+tdPvvwC4jT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEnYI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPWSdPQAAAAA/AOi/AAAAAFM52T0AAAAAbUMAQAAAAADzvPM9AAAAACGm/z8AAAAAioyVvAAAAACAmu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7OftgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0CB70AAAAAeL7kvwAAAAApDwm+AAAAAPia7z8AAAAAtCBevAAAAAA+F/k/AAAAALF3vz0AAAAA8o7zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ioLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIApRpC9AAAAAOU99b8AAAAAz4gRvgAAAAADdfc/AAAAAAFAzL0AAAAAvKfZPwAAAAAPHxo9AAAAAH3E978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4AUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9+TWvAAAAACMJADAAAAAACjxwr0AAAAAMwjzPwAAAACboaW8AAAAAO5pAEAAAAAAY20gPQAAAADl0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPMwgU1yeaMAWyUTegDjAF0lEdAsMfoV8CxNnV9lChoBkdAk28oVmBe5WgHTegDaAhHQLDIYoybhFV1fZQoaAZHQJOKxky1uzhoB03oA2gIR0CwyxxLwnYydX2UKGgGR0CT247XQMQVaAdN6ANoCEdAsMtepVCHAXV9lChoBkdAlB4vYzzmOmgHTegDaAhHQLDPYdBBzFN1fZQoaAZHQJRZ3Qb+98JoB03oA2gIR0Cw0CCyMUAUdX2UKGgGR0CT/TNEw35vaAdN6ANoCEdAsNMfBSDRMXV9lChoBkdAk7rdmthd+2gHTegDaAhHQLDTYjTrmhd1fZQoaAZHQJSrsaAFxGVoB03oA2gIR0Cw1iFsk6cRdX2UKGgGR0CTy4U4JeE7aAdN6ANoCEdAsNacIrvsq3V9lChoBkdAlGJvbO/tY2gHTegDaAhHQLDZUNm16Vt1fZQoaAZHQJOGaFcpsoFoB03oA2gIR0Cw2ZPQ8fV7dX2UKGgGR0CVW5AHE/B4aAdN6ANoCEdAsNz0UAT7EnV9lChoBkdAk+ipLAYYSGgHTegDaAhHQLDdsaTwDvF1fZQoaAZHQJOp0IC2c8VoB03oA2gIR0Cw4UE4WDYidX2UKGgGR0CSza+wkgOjaAdN6ANoCEdAsOGE6wMYuXV9lChoBkdAkxpu9vjwQWgHTegDaAhHQLDkQ7sv7Fd1fZQoaAZHQJQXvEGZ/kNoB03oA2gIR0Cw5MDN2TxHdX2UKGgGR0CTvANsWO6vaAdN6ANoCEdAsOeBfzBhyHV9lChoBkdAjfqFvZRKpWgHTegDaAhHQLDnxTcIqsl1fZQoaAZHQJFosyO7xutoB03oA2gIR0Cw6rgSJ0nxdX2UKGgGR0CSgrwm3OObaAdN6ANoCEdAsOtnKQq7RXV9lChoBkdAk3R+Jxeb/mgHTegDaAhHQLDvj5kbxVh1fZQoaAZHQJOl4J9iMHdoB03oA2gIR0Cw79bbg0j1dX2UKGgGR0CRKBxc3VCpaAdN6ANoCEdAsPKvC53C9HV9lChoBkdAkimFolD4QGgHTegDaAhHQLDzLHJ9y951fZQoaAZHQJN377XQMQVoB03oA2gIR0Cw9eYaYNRWdX2UKGgGR0CTgCQ5WBBiaAdN6ANoCEdAsPYpBjWkJ3V9lChoBkdAkt0vGlyimGgHTegDaAhHQLD493np0Op1fZQoaAZHQJIugoLG7z1oB03oA2gIR0Cw+XhttQ9BdX2UKGgGR0CQPZunuRcNaAdN6ANoCEdAsP2AmlZX+3V9lChoBkdAkoWeKjzqbGgHTegDaAhHQLD96JbdJrd1fZQoaAZHQJM7rX2/SIBoB03oA2gIR0CxAQWhVU++dX2UKGgGR0CS+xj4593KaAdN6ANoCEdAsQGEUFjd6HV9lChoBkdAkr6jDjzZpWgHTegDaAhHQLEEP23azu51fZQoaAZHQJF89fD1oQFoB03oA2gIR0CxBIDIaLn+dX2UKGgGR0CTK4SWJJoTaAdN6ANoCEdAsQdIOYplSXV9lChoBkdAkkm6bvw3HmgHTegDaAhHQLEHxjnV5KR1fZQoaAZHQJKM8371qWVoB03oA2gIR0CxCyCtq59WdX2UKGgGR0CRfInpSrHVaAdN6ANoCEdAsQuLu+h4+3V9lChoBkfAPqMmnfl6q2gHS35oCEdAsQxdGhEjPnV9lChoBkdAkRnvY8Md92gHTegDaAhHQLEPTvQ4S6F1fZQoaAZHQJEIgyHmA9VoB03oA2gIR0CxD8xmwqy4dX2UKGgGR8A/Omthd+ocaAdLhmgIR0CxEJ7e2uxKdX2UKGgGR0CQhgPTodMkaAdN6ANoCEdAsRLA/4ZdfXV9lChoBkdAkjPMRL9MsmgHTegDaAhHQLETRIqslsx1fZQoaAZHQJFtFi+cpb5oB03oA2gIR0CxFYTCUHIIdX2UKGgGR0CSmvRYzSCwaAdN6ANoCEdAsRba1+iJwnV9lChoBkdAkd6bDhtLtmgHTegDaAhHQLEZWfGdZq51fZQoaAZHQJJyxeJHiFVoB03oA2gIR0CxGhfEsJ6ZdX2UKGgGR0CScmrHEMspaAdN6ANoCEdAsR2QCxNZeXV9lChoBkdAkmSNOVPepGgHTegDaAhHQLEe5An2Iwd1fZQoaAZHQJMYc/zJ6ppoB03oA2gIR0CxIQHGGVRldX2UKGgGR0CSGMVxjriVaAdN6ANoCEdAsSGF2U0N0HV9lChoBkdAj5fwpF1B+mgHTegDaAhHQLEjy9uxbB51fZQoaAZHQJL+su8K5TZoB03oA2gIR0CxJRzmbLEDdX2UKGgGR0CRLT4EOiFkaAdN6ANoCEdAsSc/uRcNY3V9lChoBkdAjNkxekYXPGgHTegDaAhHQLEn7WVNYbN1fZQoaAZHQJLpouJ1q35oB03oA2gIR0CxK0wpe/pMdX2UKGgGR0CSmL+nIhhZaAdN6ANoCEdAsS0vxFy7w3V9lChoBkdAlKP6r/82rGgHTegDaAhHQLEvX1tfoid1fZQoaAZHQJI2mP0Zm7JoB03oA2gIR0CxL+bowEhadX2UKGgGR0CShpHYpUgkaAdN6ANoCEdAsTI3BqKxcHV9lChoBkdAk51o7FKkEmgHTegDaAhHQLEziiO/+Kl1fZQoaAZHQJLM0Bo24utoB03oA2gIR0CxNb04BFNMdX2UKGgGR0CTWs2AoXsPaAdN6ANoCEdAsTZA5hjOLXV9lChoBkdAk0vFTefqYGgHTegDaAhHQLE5PHRkVet1fZQoaAZHQJLWpNrTH81oB03oA2gIR0CxO1LRa5f/dX2UKGgGR0CRvFCNjslcaAdN6ANoCEdAsT3BI5HVgHV9lChoBkdAkk80J4SpSGgHTegDaAhHQLE+Q8DSw4d1fZQoaAZHQJPRJCw8nu1oB03oA2gIR0CxQJlJDmbLdX2UKGgGR0CUgQI7vG6xaAdN6ANoCEdAsUHrOlfqo3V9lChoBkdAkvnT0xubZ2gHTegDaAhHQLFECL9MsYl1fZQoaAZHQJTncybhFVloB03oA2gIR0CxRIwsoUi7dX2UKGgGR0CU5vbhWHUMaAdN6ANoCEdAsUcblA/s3XV9lChoBkdAk5u7AtWdVmgHTegDaAhHQLFJFgRbr1N1fZQoaAZHQHqXdbX6InBoB03oA2gIR0CxTB3b212JdX2UKGgGR0CUX6ZuQ6p6aAdN6ANoCEdAsUymu4gA63V9lChoBkdAlFmkOqebu2gHTegDaAhHQLFO5WO6unx1fZQoaAZHQJNz2F6AvtdoB03oA2gIR0CxUEEm+j/NdX2UKGgGR0CUEdG5+YtyaAdN6ANoCEdAsVJvViF0xXV9lChoBkdAk2c29g4OtmgHTegDaAhHQLFS9Pgeii91fZQoaAZHQJH7Z5IH1OFoB03oA2gIR0CxVUU7CBPLdX2UKGgGR0CSQKMVk+X7aAdN6ANoCEdAsVcRaNdZ73V9lChoBkdAkkdD1GsmwGgHTegDaAhHQLFaYYO2AoZ1fZQoaAZHQJJywtQKrrBoB03oA2gIR0CxWxEeyRjjdX2UKGgGR0CTDInl4keIaAdN6ANoCEdAsV1Nnxri2nV9lChoBkdAfUMwHJLdvmgHTegDaAhHQLFeossQNCt1fZQoaAZHQI+aE3n6l+FoB03oA2gIR0CxYMTCUHIIdX2UKGgGR0CSl54+KTB7aAdN6ANoCEdAsWFKlJpWWHV9lChoBkdAkLDZzDGcWmgHTegDaAhHQLFji7e2uxN1fZQoaAZHQJHwkpuuRtBoB03oA2gIR0CxZOc+RoysdX2UKGgGR0CR0aZQYUFjaAdN6ANoCEdAsWgKcG1QZXV9lChoBkdAkupS0ngHeWgHTegDaAhHQLFo2uYx+KF1fZQoaAZHQJDxHns9jgBoB03oA2gIR0Cxa5smfGuLdX2UKGgGR0CR2OJqIrOJaAdN6ANoCEdAsWz0p3HJcXV9lChoBkdAkLqL2USqVGgHTegDaAhHQLFvFrCWNWF1fZQoaAZHQJLW6veP7vZoB03oA2gIR0Cxb5p+6RQrdX2UKGgGR0CStMf9gnc+aAdN6ANoCEdAsXHkTBZZCHV9lChoBkdAkt7vBi1Aq2gHTegDaAhHQLFzMQEZBLR1ZS4="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 78125,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48de3e2d96946fd16687636ede08096bbcfaed52ef8895115a0763c8925d869
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f35265796a88f9d2cee1a1077f21202d1dfb98e71519f7735b26037ea5d549fb
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec06f0ab80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec06f0ac10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec06f0aca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec06f0ad30>", "_build": "<function ActorCriticPolicy._build at 0x7fec06f0adc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec06f0ae50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec06f0aee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec06f0af70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec06f0e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec06f0e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec06f0e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec06f0e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec06f0c680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679255944896634850, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN0y4T7RnJg+9FATP5ED5j5yUPG+a5GUPlq9fz5jMVi/aaeUPxeg1b1pjVQ/oa2bPR6RSD8LY/K/LwEBP7wy579iLQk+rCAhv/QLsD5VFfw97jyuP40mUb9Wcwg/M6VRv+p3NT/qTH4+v6EIP/E3Z7+SRgW/9MIuPkUgCT+kRpy/47hxPyOqAz8EXei+Roz2voII976XhSG/V1zUv1XhyT3ZjY6/MFR6PyVDKT+4eJG7ZOolPvlnM0DbOxY/0td6v7hxDj/MjCo+mZWQP7QBsT5FkrS/6kx+PrXT778AuI0/vjoNv6zKbj8y3Ro/goSlv151vz4H0SE+byh3vz+btT4KgbO/QXjMP5WIEb8F90Y/ar+lvqcJd0Dbyck+8EafPmrrkz9g0BJA/2t1v2gVYj++gpe+7BqHQN8tUT4mitK/6nc1P+pMfj610++/8Tdnv1MU4b7ocsY9k9sBP2hTFz+KXrc+9MvGPSstLT5L46q9ZPQGPt0en789S0m/gQH1v2NVWr22Q4C+4Y5lPk/CuT/5o18/D3/uP0VtKj8riAw8vPTiPjrAA78GnwQ/+NlrP0WStL/qTH4+tdPvvwC4jT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEnYI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPWSdPQAAAAA/AOi/AAAAAFM52T0AAAAAbUMAQAAAAADzvPM9AAAAACGm/z8AAAAAioyVvAAAAACAmu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7OftgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0CB70AAAAAeL7kvwAAAAApDwm+AAAAAPia7z8AAAAAtCBevAAAAAA+F/k/AAAAALF3vz0AAAAA8o7zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1ioLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIApRpC9AAAAAOU99b8AAAAAz4gRvgAAAAADdfc/AAAAAAFAzL0AAAAAvKfZPwAAAAAPHxo9AAAAAH3E978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4AUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9+TWvAAAAACMJADAAAAAACjxwr0AAAAAMwjzPwAAAACboaW8AAAAAO5pAEAAAAAAY20gPQAAAADl0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPMwgU1yeaMAWyUTegDjAF0lEdAsMfoV8CxNnV9lChoBkdAk28oVmBe5WgHTegDaAhHQLDIYoybhFV1fZQoaAZHQJOKxky1uzhoB03oA2gIR0CwyxxLwnYydX2UKGgGR0CT247XQMQVaAdN6ANoCEdAsMtepVCHAXV9lChoBkdAlB4vYzzmOmgHTegDaAhHQLDPYdBBzFN1fZQoaAZHQJRZ3Qb+98JoB03oA2gIR0Cw0CCyMUAUdX2UKGgGR0CT/TNEw35vaAdN6ANoCEdAsNMfBSDRMXV9lChoBkdAk7rdmthd+2gHTegDaAhHQLDTYjTrmhd1fZQoaAZHQJSrsaAFxGVoB03oA2gIR0Cw1iFsk6cRdX2UKGgGR0CTy4U4JeE7aAdN6ANoCEdAsNacIrvsq3V9lChoBkdAlGJvbO/tY2gHTegDaAhHQLDZUNm16Vt1fZQoaAZHQJOGaFcpsoFoB03oA2gIR0Cw2ZPQ8fV7dX2UKGgGR0CVW5AHE/B4aAdN6ANoCEdAsNz0UAT7EnV9lChoBkdAk+ipLAYYSGgHTegDaAhHQLDdsaTwDvF1fZQoaAZHQJOp0IC2c8VoB03oA2gIR0Cw4UE4WDYidX2UKGgGR0CSza+wkgOjaAdN6ANoCEdAsOGE6wMYuXV9lChoBkdAkxpu9vjwQWgHTegDaAhHQLDkQ7sv7Fd1fZQoaAZHQJQXvEGZ/kNoB03oA2gIR0Cw5MDN2TxHdX2UKGgGR0CTvANsWO6vaAdN6ANoCEdAsOeBfzBhyHV9lChoBkdAjfqFvZRKpWgHTegDaAhHQLDnxTcIqsl1fZQoaAZHQJFosyO7xutoB03oA2gIR0Cw6rgSJ0nxdX2UKGgGR0CSgrwm3OObaAdN6ANoCEdAsOtnKQq7RXV9lChoBkdAk3R+Jxeb/mgHTegDaAhHQLDvj5kbxVh1fZQoaAZHQJOl4J9iMHdoB03oA2gIR0Cw79bbg0j1dX2UKGgGR0CRKBxc3VCpaAdN6ANoCEdAsPKvC53C9HV9lChoBkdAkimFolD4QGgHTegDaAhHQLDzLHJ9y951fZQoaAZHQJN377XQMQVoB03oA2gIR0Cw9eYaYNRWdX2UKGgGR0CTgCQ5WBBiaAdN6ANoCEdAsPYpBjWkJ3V9lChoBkdAkt0vGlyimGgHTegDaAhHQLD493np0Op1fZQoaAZHQJIugoLG7z1oB03oA2gIR0Cw+XhttQ9BdX2UKGgGR0CQPZunuRcNaAdN6ANoCEdAsP2AmlZX+3V9lChoBkdAkoWeKjzqbGgHTegDaAhHQLD96JbdJrd1fZQoaAZHQJM7rX2/SIBoB03oA2gIR0CxAQWhVU++dX2UKGgGR0CS+xj4593KaAdN6ANoCEdAsQGEUFjd6HV9lChoBkdAkr6jDjzZpWgHTegDaAhHQLEEP23azu51fZQoaAZHQJF89fD1oQFoB03oA2gIR0CxBIDIaLn+dX2UKGgGR0CTK4SWJJoTaAdN6ANoCEdAsQdIOYplSXV9lChoBkdAkkm6bvw3HmgHTegDaAhHQLEHxjnV5KR1fZQoaAZHQJKM8371qWVoB03oA2gIR0CxCyCtq59WdX2UKGgGR0CRfInpSrHVaAdN6ANoCEdAsQuLu+h4+3V9lChoBkfAPqMmnfl6q2gHS35oCEdAsQxdGhEjPnV9lChoBkdAkRnvY8Md92gHTegDaAhHQLEPTvQ4S6F1fZQoaAZHQJEIgyHmA9VoB03oA2gIR0CxD8xmwqy4dX2UKGgGR8A/Omthd+ocaAdLhmgIR0CxEJ7e2uxKdX2UKGgGR0CQhgPTodMkaAdN6ANoCEdAsRLA/4ZdfXV9lChoBkdAkjPMRL9MsmgHTegDaAhHQLETRIqslsx1fZQoaAZHQJFtFi+cpb5oB03oA2gIR0CxFYTCUHIIdX2UKGgGR0CSmvRYzSCwaAdN6ANoCEdAsRba1+iJwnV9lChoBkdAkd6bDhtLtmgHTegDaAhHQLEZWfGdZq51fZQoaAZHQJJyxeJHiFVoB03oA2gIR0CxGhfEsJ6ZdX2UKGgGR0CScmrHEMspaAdN6ANoCEdAsR2QCxNZeXV9lChoBkdAkmSNOVPepGgHTegDaAhHQLEe5An2Iwd1fZQoaAZHQJMYc/zJ6ppoB03oA2gIR0CxIQHGGVRldX2UKGgGR0CSGMVxjriVaAdN6ANoCEdAsSGF2U0N0HV9lChoBkdAj5fwpF1B+mgHTegDaAhHQLEjy9uxbB51fZQoaAZHQJL+su8K5TZoB03oA2gIR0CxJRzmbLEDdX2UKGgGR0CRLT4EOiFkaAdN6ANoCEdAsSc/uRcNY3V9lChoBkdAjNkxekYXPGgHTegDaAhHQLEn7WVNYbN1fZQoaAZHQJLpouJ1q35oB03oA2gIR0CxK0wpe/pMdX2UKGgGR0CSmL+nIhhZaAdN6ANoCEdAsS0vxFy7w3V9lChoBkdAlKP6r/82rGgHTegDaAhHQLEvX1tfoid1fZQoaAZHQJI2mP0Zm7JoB03oA2gIR0CxL+bowEhadX2UKGgGR0CShpHYpUgkaAdN6ANoCEdAsTI3BqKxcHV9lChoBkdAk51o7FKkEmgHTegDaAhHQLEziiO/+Kl1fZQoaAZHQJLM0Bo24utoB03oA2gIR0CxNb04BFNMdX2UKGgGR0CTWs2AoXsPaAdN6ANoCEdAsTZA5hjOLXV9lChoBkdAk0vFTefqYGgHTegDaAhHQLE5PHRkVet1fZQoaAZHQJLWpNrTH81oB03oA2gIR0CxO1LRa5f/dX2UKGgGR0CRvFCNjslcaAdN6ANoCEdAsT3BI5HVgHV9lChoBkdAkk80J4SpSGgHTegDaAhHQLE+Q8DSw4d1fZQoaAZHQJPRJCw8nu1oB03oA2gIR0CxQJlJDmbLdX2UKGgGR0CUgQI7vG6xaAdN6ANoCEdAsUHrOlfqo3V9lChoBkdAkvnT0xubZ2gHTegDaAhHQLFECL9MsYl1fZQoaAZHQJTncybhFVloB03oA2gIR0CxRIwsoUi7dX2UKGgGR0CU5vbhWHUMaAdN6ANoCEdAsUcblA/s3XV9lChoBkdAk5u7AtWdVmgHTegDaAhHQLFJFgRbr1N1fZQoaAZHQHqXdbX6InBoB03oA2gIR0CxTB3b212JdX2UKGgGR0CUX6ZuQ6p6aAdN6ANoCEdAsUymu4gA63V9lChoBkdAlFmkOqebu2gHTegDaAhHQLFO5WO6unx1fZQoaAZHQJNz2F6AvtdoB03oA2gIR0CxUEEm+j/NdX2UKGgGR0CUEdG5+YtyaAdN6ANoCEdAsVJvViF0xXV9lChoBkdAk2c29g4OtmgHTegDaAhHQLFS9Pgeii91fZQoaAZHQJH7Z5IH1OFoB03oA2gIR0CxVUU7CBPLdX2UKGgGR0CSQKMVk+X7aAdN6ANoCEdAsVcRaNdZ73V9lChoBkdAkkdD1GsmwGgHTegDaAhHQLFaYYO2AoZ1fZQoaAZHQJJywtQKrrBoB03oA2gIR0CxWxEeyRjjdX2UKGgGR0CTDInl4keIaAdN6ANoCEdAsV1Nnxri2nV9lChoBkdAfUMwHJLdvmgHTegDaAhHQLFeossQNCt1fZQoaAZHQI+aE3n6l+FoB03oA2gIR0CxYMTCUHIIdX2UKGgGR0CSl54+KTB7aAdN6ANoCEdAsWFKlJpWWHV9lChoBkdAkLDZzDGcWmgHTegDaAhHQLFji7e2uxN1fZQoaAZHQJHwkpuuRtBoB03oA2gIR0CxZOc+RoysdX2UKGgGR0CR0aZQYUFjaAdN6ANoCEdAsWgKcG1QZXV9lChoBkdAkupS0ngHeWgHTegDaAhHQLFo2uYx+KF1fZQoaAZHQJDxHns9jgBoB03oA2gIR0Cxa5smfGuLdX2UKGgGR0CR2OJqIrOJaAdN6ANoCEdAsWz0p3HJcXV9lChoBkdAkLqL2USqVGgHTegDaAhHQLFvFrCWNWF1fZQoaAZHQJLW6veP7vZoB03oA2gIR0Cxb5p+6RQrdX2UKGgGR0CStMf9gnc+aAdN6ANoCEdAsXHkTBZZCHV9lChoBkdAkt7vBi1Aq2gHTegDaAhHQLFzMQEZBLR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (987 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1310.8729015885851, "std_reward": 62.71574755071787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T21:21:13.883080"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8937511af810bbcb51c7043fd58a5a6ec9c3cce56c13338b8087f551a0cdfede
3
+ size 2136