liuhaotian commited on
Commit
c999bfb
1 Parent(s): 7df3ce1

Upload checkpoints

Browse files
README.md CHANGED
@@ -1,43 +1,207 @@
1
  ---
2
- inference: false
 
3
  ---
4
 
5
- <br>
6
- <br>
7
 
8
- # LLaVA Model Card
9
 
10
- ## Model details
11
 
12
- **Model type:**
13
- LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
14
- It is an auto-regressive language model, based on the transformer architecture.
15
 
16
- **Model date:**
17
- LLaVA-v1.5-7B-LoRA was trained in October 2023.
18
 
19
- **Paper or resources for more information:**
20
- https://llava-vl.github.io/
21
 
22
- ## License
23
- Llama 2 is licensed under the LLAMA 2 Community License,
24
- Copyright (c) Meta Platforms, Inc. All Rights Reserved.
25
 
26
- **Where to send questions or comments about the model:**
27
- https://github.com/haotian-liu/LLaVA/issues
28
 
29
- ## Intended use
30
- **Primary intended uses:**
31
- The primary use of LLaVA is research on large multimodal models and chatbots.
32
 
33
- **Primary intended users:**
34
- The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
 
 
 
 
35
 
36
- ## Training dataset
37
- - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
38
- - 158K GPT-generated multimodal instruction-following data.
39
- - 450K academic-task-oriented VQA data mixture.
40
- - 40K ShareGPT data.
41
 
42
- ## Evaluation dataset
43
- A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: ./checkpoints/vicuna-7b-v1-5
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
+ ## Model Details
 
13
 
14
+ ### Model Description
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
17
 
 
 
18
 
 
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
 
27
+ ### Model Sources [optional]
 
 
 
 
28
 
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ ### Framework versions
205
+
206
+
207
+ - PEFT 0.6.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./checkpoints/vicuna-7b-v1-5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 256,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 128,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "gate_proj",
21
+ "down_proj",
22
+ "v_proj",
23
+ "q_proj",
24
+ "up_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a7951255073a472277af72ac69daaed4c63b012a6b01cddefeb38e891760343
3
+ size 639786637
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./checkpoints/vicuna-7b-v1-5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "image_aspect_ratio": "pad",
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_projector_lr": 2e-05,
16
+ "mm_projector_type": "mlp2x_gelu",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "mm_vision_select_feature": "patch",
20
+ "mm_vision_select_layer": -2,
21
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
22
+ "model_type": "llava",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "num_key_value_heads": 32,
26
+ "pad_token_id": 0,
27
+ "pretraining_tp": 1,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": null,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "float16",
32
+ "transformers_version": "4.31.0",
33
+ "tune_mm_mlp_adapter": false,
34
+ "use_cache": true,
35
+ "use_mm_proj": true,
36
+ "vocab_size": 32000
37
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7a3d4196ab4ed486a584c73ee6f92095da8ebe5c656fb33622e0adec67e6454
3
+ size 41961191
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff