liujch1998 commited on
Commit
a2f6e6c
1 Parent(s): 30e3303

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +200 -1
README.md CHANGED
@@ -1,3 +1,202 @@
1
  ---
2
- license: cc-by-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
  ---
4
+
5
+ # Model Card for Vera
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+ Vera is a commonsense statement verification model. See our paper at: <https://arxiv.org/abs/2305.03695>.
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ <!-- Provide a longer summary of what this model is. -->
16
+
17
+
18
+
19
+ - **Developed by:** Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A. Smith, Yejin Choi, Hannaneh Hajishirzi
20
+ - **Shared by [optional]:** Jiacheng Liu
21
+ - **Model type:** Transformers
22
+ - **Language(s) (NLP):** English
23
+ - **License:** MIT
24
+ - **Finetuned from model [optional]:** T5-v1.1-XXL
25
+
26
+ ### Model Sources [optional]
27
+
28
+ <!-- Provide the basic links for the model. -->
29
+
30
+ - **Repository:** <https://github.com/liujch1998/vera> (Coming soon!)
31
+ - **Paper [optional]:** <https://arxiv.org/abs/2305.03695>
32
+ - **Demo [optional]:** <https://huggingface.co/spaces/liujch1998/vera>
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+
38
+ ### Direct Use
39
+
40
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
+
42
+ Vera is intended to predict the correctness of commonsense statements.
43
+
44
+ ### Downstream Use [optional]
45
+
46
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
+
48
+ Vera can be used to detect commonsense errors made by generative LMs (e.g., ChatGPT), or filter noisy commonsense knowledge generated by other LMs (e.g., Rainier).
49
+
50
+ ### Out-of-Scope Use
51
+
52
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
+
54
+ Vera is a research prototype and may make mistakes. Do not use for making critical decisions. It is intended to predict the correctness of commonsense statements, and may be unreliable when taking input out of this scope.
55
+
56
+ ## Bias, Risks, and Limitations
57
+
58
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
59
+
60
+ See the **Limitations and Ethics Statement** section of our paper.
61
+
62
+ ### Recommendations
63
+
64
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
65
+
66
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
67
+
68
+ ## How to Get Started with the Model
69
+
70
+ Use the code below to get started with the model.
71
+
72
+ Please refer to <https://huggingface.co/spaces/liujch1998/vera/blob/main/app.py#L27-L98>
73
+
74
+ ## Training Details
75
+
76
+ ### Training Data
77
+
78
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
79
+
80
+ See the **Data Construction** section of our paper.
81
+
82
+ ### Training Procedure
83
+
84
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
85
+
86
+ See the **Model Training** section of our paper.
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+ -->
101
+
102
+ [More Information Needed]
103
+
104
+ ## Evaluation
105
+
106
+ <!-- This section describes the evaluation protocols and provides the results. -->
107
+
108
+ See the **Evaluation Results** section of our paper.
109
+
110
+ ### Testing Data, Factors & Metrics
111
+
112
+ #### Testing Data
113
+
114
+ <!-- This should link to a Data Card if possible. -->
115
+
116
+ [More Information Needed]
117
+
118
+ #### Factors
119
+
120
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
+
122
+ [More Information Needed]
123
+
124
+ #### Metrics
125
+
126
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
+
128
+ [More Information Needed]
129
+
130
+ ### Results
131
+
132
+ [More Information Needed]
133
+
134
+ #### Summary
135
+
136
+
137
+
138
+ ## Model Examination [optional]
139
+
140
+ <!-- Relevant interpretability work for the model goes here -->
141
+
142
+ [More Information Needed]
143
+
144
+ ## Environmental Impact
145
+
146
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
+
148
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
+
150
+ - **Hardware Type:** V100
151
+ - **Hours used:** 2560
152
+ - **Cloud Provider:** Private
153
+ - **Compute Region:** US
154
+ - **Carbon Emitted:** 331 kg
155
+
156
+ ## Technical Specifications [optional]
157
+
158
+ ### Model Architecture and Objective
159
+
160
+ [More Information Needed]
161
+
162
+ ### Compute Infrastructure
163
+
164
+ [More Information Needed]
165
+
166
+ #### Hardware
167
+
168
+ [More Information Needed]
169
+
170
+ #### Software
171
+
172
+ [More Information Needed]
173
+
174
+ ## Citation [optional]
175
+
176
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
+
178
+ **BibTeX:**
179
+
180
+ [More Information Needed]
181
+
182
+ **APA:**
183
+
184
+ [More Information Needed]
185
+
186
+ ## Glossary [optional]
187
+
188
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
+
190
+ [More Information Needed]
191
+
192
+ ## More Information [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Authors [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Contact
201
+
202
+ Jiacheng Liu