---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: empower-functions-clean-data-one-more-functions
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
adapter: qlora
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
bf16: true
chat_template: inst
dataset_prepared_path: last_run_prepared
datasets:
- conversation: mistral
path: 659f8b7bb7c243ab879f8bc17876ce4a/data/with_function_response/more_functions/one_more_function/function_used_training.jsonl
type: sharegpt
- conversation: mistral
path: 659f8b7bb7c243ab879f8bc17876ce4a/data/with_function_response/original_clean/function_not_used_training.jsonl
type: sharegpt
debug: null
eval_max_new_tokens: 256
eval_steps: 0.05
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: liuylhf/empower-functions-clean-data-one-more-functions
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_model_dir: null
lora_r: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
loss_watchdog_patience: 3
loss_watchdog_threshold: 5.0
lr_scheduler: cosine
micro_batch_size: 2
model_config:
output_router_logits: true
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: 659f8b7bb7c243ab879f8bc17876ce4a/model
pad_to_sequence_len: true
sample_packing: true
save_steps: 0.1
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01
wandb_log_model: end
wandb_name: more-tools
wandb_project: function-call
warmup_steps: 10
weight_decay: 0.0
```
# empower-functions-clean-data-one-more-functions
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0863
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0157 | 0.0 | 1 | 2.1200 |
| 0.153 | 0.05 | 23 | 0.1454 |
| 0.1236 | 0.1 | 46 | 0.1160 |
| 0.1043 | 0.15 | 69 | 0.1073 |
| 0.1163 | 0.2 | 92 | 0.1035 |
| 0.1072 | 0.25 | 115 | 0.0996 |
| 0.0988 | 0.31 | 138 | 0.0978 |
| 0.0962 | 0.36 | 161 | 0.0963 |
| 0.0823 | 0.41 | 184 | 0.0939 |
| 0.0785 | 0.46 | 207 | 0.0938 |
| 0.0941 | 0.51 | 230 | 0.0918 |
| 0.0968 | 0.56 | 253 | 0.0905 |
| 0.0856 | 0.61 | 276 | 0.0899 |
| 0.0965 | 0.66 | 299 | 0.0895 |
| 0.0894 | 0.71 | 322 | 0.0881 |
| 0.086 | 0.76 | 345 | 0.0872 |
| 0.0941 | 0.82 | 368 | 0.0869 |
| 0.0894 | 0.87 | 391 | 0.0867 |
| 0.0782 | 0.92 | 414 | 0.0864 |
| 0.0815 | 0.97 | 437 | 0.0863 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0