--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: empower-functions-more-tools results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml adapter: qlora base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 bf16: true chat_template: inst dataset_prepared_path: last_run_prepared datasets: - conversation: mistral path: ./data/with_function_response/function_not_used_training_small.jsonl type: sharegpt - conversation: mistral path: ./data/with_function_response/more_functions/function_used_training_small.jsonl type: sharegpt debug: null eval_max_new_tokens: 256 eval_steps: 0.2 eval_table_size: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: liuylhf/empower-functions-more-tools learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_model_dir: null lora_r: 32 lora_target_modules: - q_proj - k_proj - v_proj - o_proj loss_watchdog_patience: 3 loss_watchdog_threshold: 5.0 lr_scheduler: cosine micro_batch_size: 2 model_config: output_router_logits: true model_type: AutoModelForCausalLM num_epochs: 2 optimizer: paged_adamw_8bit output_dir: 2af0968cad514d6e9d5fb8448230e1c6/model pad_to_sequence_len: true sample_packing: true save_steps: 0.1 sequence_len: 4096 strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_log_model: end wandb_name: mixtral-instruct-lora-no-negative wandb_project: function-call warmup_steps: 10 weight_decay: 0.0 ```

# empower-functions-more-tools This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0