---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral-lora
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: ./data/raw_format/tool_used_training.jsonl
type: sharegpt
- path: ./data/raw_format/tool_not_used_training.jsonl
type: sharegpt
- path: ./data/raw_format/no_tools_training.jsonl
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ../../text-generation-webui/loras/mistral-instruct-raw-format-v2-more-positive-inst
adapter: lora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
hub_model_id: liuylhf/mistral-lora
wandb_project: function-call
wandb_name: mixtral-instruct-qlora-v1
wandb_log_model: end
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 0.5
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3
warmup_steps: 10
# evals_per_epoch: 20
eval_steps: 0.2
save_steps: 0.2
eval_table_size:
eval_max_new_tokens: 256
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 1.0
fsdp:
fsdp_config:
```
# mistral-lora
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 0.5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3787 | 0.0 | 1 | 1.4156 |
| 0.0868 | 0.1 | 31 | 0.1745 |
| 0.149 | 0.21 | 62 | 0.1603 |
| 0.1328 | 0.31 | 93 | 0.1532 |
| 0.1635 | 0.41 | 124 | 0.1480 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0