liyingjian
commited on
Commit
•
4a195de
1
Parent(s):
bd950d9
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +38 -38
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +5 -5
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 258.29 +/- 21.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ca3ff880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ca3ff910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ca3ff9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ca3ffa30>", "_build": "<function ActorCriticPolicy._build at 0x7f86ca3ffac0>", "forward": "<function ActorCriticPolicy.forward at 0x7f86ca3ffb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f86ca3ffbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ca3ffc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86ca3ffd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ca3ffd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ca3ffe20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ca3ffeb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f86ca400900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688624587060979999, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNuaj4loBE/ugIXPxZ5Or+5YBK+D17HvQAAAAAAAAAAzTvBPLicij+u8Ag9XFAhv11G6jzaTow+AAAAAAAAAACaZGO9fJu2P0Q9oL7j0QU9EVwGvU5UsToAAAAAAAAAADMeMT/zkXk/bN8oP/5PSL+jaQs9NXT/PQAAAAAAAAAAcwMOPlbJtT8biRE/wfYSvhAbHb5VW1E9AAAAAAAAAADTR6o+Qe2/PTrRED6kn2y/mmBePW7DVb0AAAAAAAAAAM2kAD1W6a8/5nSaPo3UkL7Jlwm9CEpxuwAAAAAAAAAAmv3svTyAvz9V17a+QYq3vbxQ9D3SmhW8AAAAAAAAAABmFCc9H8GwP7LO3z4nxlm+pvHTvMCbXLwAAAAAAAAAAACYYzxs/N4+avUOPwOxi7+pl+2+WkX/PgAAAAAAAAAALTsnvgiTmT8blHe+XvMhv4pe6ry++0C+AAAAAAAAAAAA7M+8U7F9Pza4C75fdW6/NtrmPtDI7D0AAAAAAAAAAAgkI79OwJM9Wqv6vT5lmr9phIu+qvu3PgAAAAAAAAAAAIglPF2Woz/ZY7M9u6wLv0Byw7x26Tm+AAAAAAAAAACVzNq+0f0vPp7u9r45qIG/qmXlvTgQeL4AAAAAAAAAAJpKhb1vZEs/q6wKPWWyT7+r3SK+Bo/xuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF9+n4O+ZgKMAWyUS2uMAXSUR0B/DFm9QGfPdX2UKGgGR8Bp1EebNKRMaAdLkWgIR0B/DH7FbVz7dX2UKGgGR8BEi3RG+bmVaAdLgmgIR0B/DezOX3QEdX2UKGgGR8BY5I/7iyY5aAdLXWgIR0B/DywOe8PGdX2UKGgGR8BJwkGRmseXaAdLVGgIR0B/EIlqrR0EdX2UKGgGR8BgOl03fhuPaAdLcWgIR0B/EVvbXYlIdX2UKGgGR8BaOH1zySV4aAdLZmgIR0B/EYTL4etCdX2UKGgGR8BP29RBNVR2aAdLUGgIR0B/EelXRw6ydX2UKGgGR8BTMvtx+8XfaAdLTGgIR0B/EcXQ+lj3dX2UKGgGR8Ba1JmNBF/haAdLa2gIR0B/ErvE0iyIdX2UKGgGR8BfEXssxwhoaAdLUWgIR0B/E+b3Gn4xdX2UKGgGR8BPcwCCBf8eaAdLQ2gIR0B/FGlZX+2mdX2UKGgGR8BJy6fapPykaAdLYGgIR0B/Fx0YCQtBdX2UKGgGR8AWswGnn+yaaAdLS2gIR0B/F7KHO8kEdX2UKGgGR8BPt0o0ALiNaAdLX2gIR0B/GLGsFMZhdX2UKGgGR8A/d4qwyIpIaAdLQWgIR0B/Gk0cfeUIdX2UKGgGR8BQ16jSG8EnaAdLgmgIR0B/GwCHRCyAdX2UKGgGR8BMVh2nsLOSaAdLSmgIR0B/G7CLuQZGdX2UKGgGR8BY7Q1ivxH5aAdLhWgIR0B/G5NcnmaIdX2UKGgGR8BgJorOJLuhaAdLd2gIR0B/HAu7HyVfdX2UKGgGR8BUxHaN+9amaAdLXWgIR0B/HdgXuVopdX2UKGgGR8A9YXUH6dlNaAdLe2gIR0B/H2HN5dGBdX2UKGgGR0A91F5fMOf/aAdLYWgIR0B/H6cx0uDjdX2UKGgGR8BQJjF6zE75aAdLYWgIR0B/INL/S6UadX2UKGgGR8BZRhCtzS1FaAdLY2gIR0B/IaWOZLIxdX2UKGgGR8BUwdUn5SFXaAdLfWgIR0B/IfCXQdCFdX2UKGgGR8BUq97WuoxYaAdLXGgIR0B/I2PcSGrTdX2UKGgGR8BbJOCkGiYcaAdLWWgIR0B/I5FZxJd0dX2UKGgGR8BShF7Y02tMaAdLWmgIR0B/JL+kxh2GdX2UKGgGR8BhFQcHWz4UaAdLpWgIR0B/JoLQXyiFdX2UKGgGR8Bpx00k4WDZaAdLaGgIR0B/KFgQYk3TdX2UKGgGR8BGpGy5Zr57aAdLZmgIR0B/KX1CgK4QdX2UKGgGR8BSgkzTF2mpaAdLZ2gIR0B/KX+0gKWtdX2UKGgGR8BP6n09QoCuaAdLd2gIR0B/Kxo9LYf5dX2UKGgGR8BbEr4rSVnmaAdLXmgIR0B/LH/ACW/rdX2UKGgGR8BUU7aZhKDkaAdLeWgIR0B/LH/giu+zdX2UKGgGR8BXKAFkhA4XaAdLY2gIR0B/LOz0HyEtdX2UKGgGR8BVJk9U0elsaAdLfmgIR0B/Lu07bL2YdX2UKGgGR8BMXs0P6KtQaAdLXGgIR0B/MDa9K28adX2UKGgGR8BBgSOaOPvKaAdLXWgIR0B/MDSOR1YAdX2UKGgGR8BQtFaW5YozaAdLcGgIR0B/MVXJYDDCdX2UKGgGR8BJ53vphWo4aAdLT2gIR0B/MXYVZcLSdX2UKGgGR8BF+cebNKRMaAdLc2gIR0B/MXEOy3TedX2UKGgGR8BQnk1Q66reaAdLgGgIR0B/MgeEIw/QdX2UKGgGR8BVIyMkyDZlaAdLemgIR0B/NAUfxMFmdX2UKGgGR8BgW30qYqoZaAdLWWgIR0B/NBHpbD/EdX2UKGgGR8BSw0ep4rz5aAdLYWgIR0B/NNhRZU1idX2UKGgGR8BqcJ20Re1KaAdLamgIR0B/NN1HOKO1dX2UKGgGR8BYmXMMZxaQaAdLWmgIR0B/NhmYjSogdX2UKGgGR8BKUcfNiYsvaAdLR2gIR0B/N7q1PWQPdX2UKGgGR8BSUOBMBZIQaAdLR2gIR0B/OEokRjBmdX2UKGgGR8BRBS3PRiPRaAdLdGgIR0B/OHifg75mdX2UKGgGR8BbsxWxQizLaAdLiGgIR0B/OYEJSiuddX2UKGgGR8BOkfTb349HaAdLemgIR0B/OVm8M/hVdX2UKGgGR8BPgJtSAH3UaAdLWmgIR0B/OW2oegctdX2UKGgGR8BJBLg4wRGuaAdLSWgIR0B/OqQgcLjQdX2UKGgGR8BRpq3mV7hOaAdLc2gIR0B/OuOdXko4dX2UKGgGR8BYT3nMdLg5aAdLfWgIR0B/Ov5ftx+8dX2UKGgGR8BWMs9W6shgaAdLdGgIR0B/O762v0ROdX2UKGgGR8BBiecQRPGiaAdLgWgIR0B/PBlbu+h5dX2UKGgGR8BSnfPLPldUaAdLbGgIR0B/Po//vOQhdX2UKGgGR8BU7T0lJHy3aAdLT2gIR0B/PsqAjIJadX2UKGgGR8BSHn9aUzKtaAdLcmgIR0B/Px84PwuvdX2UKGgGR8BQRfIXCTEBaAdLQ2gIR0B/P4B2fTTfdX2UKGgGR8BYaXxOLzf8aAdLfWgIR0B/P1t3wCr+dX2UKGgGR8BXG+p0fYBeaAdLSWgIR0B/P98eCCjDdX2UKGgGR8Bdcq8tf5UMaAdLc2gIR0B/QI4LkS26dX2UKGgGR8A3vz8xbjcVaAdLW2gIR0B/QMS26TW5dX2UKGgGR8BItFPi1iOOaAdLR2gIR0B/QXIPsiSrdX2UKGgGR8BLfV6/qPfbaAdLWWgIR0B/QXkxREWqdX2UKGgGR8BOmq/20zCUaAdLT2gIR0B/QdA0Kqn4dX2UKGgGR8BgQbbYbsF/aAdLb2gIR0B/Qk+zMRpUdX2UKGgGR8BKcYXXRPXTaAdLY2gIR0B/Q79pAUtadX2UKGgGR8Bf8XeSB9ThaAdLYWgIR0B/RNEy+HrRdX2UKGgGR8BVdLoSteUqaAdLSWgIR0B/RilnAZbZdX2UKGgGR8BYZ+Zb6guiaAdLVGgIR0B/Rtradtl7dX2UKGgGR8BTW+/k/8l5aAdLgWgIR0B/R4ETxoZidX2UKGgGR8BMzLBsQ/X5aAdLRWgIR0B/R/A/LTx5dX2UKGgGR8BQxCa3I+4caAdLcGgIR0B/SSFbmlqKdX2UKGgGR8BQ3r7fpD/maAdLWGgIR0B/Sb3evZAZdX2UKGgGR8BijuGGmDUWaAdLb2gIR0B/Sddszl90dX2UKGgGR8BTaw1m8M/haAdLb2gIR0B/SmYjSofkdX2UKGgGR8BTAyi/O+qSaAdLamgIR0B/SpbFCLMtdX2UKGgGR8BRfj9KmKqGaAdLaWgIR0B/SqwbEP1+dX2UKGgGR8BB4bor4FibaAdLWWgIR0B/StwxWT5gdX2UKGgGR8BnK5MrVe8gaAdLbmgIR0B/TDO+qR2bdX2UKGgGR8BAntJWeYlZaAdLk2gIR0B/TKRkmQbNdX2UKGgGR0BPbGDcuanaaAdN6ANoCEdAf0ydGiHqNnV9lChoBkfAVZcIiTt9hWgHS2RoCEdAf000nw5NoXV9lChoBkfAUZ6n/DLr5mgHS21oCEdAf06EVFhG6XV9lChoBkfAWSXOGCZnc2gHS0hoCEdAf071VHWjGnV9lChoBkfATOOxSpBHC2gHS1hoCEdAf084dIXj2nV9lChoBkfAX71dIGyHEmgHS2doCEdAf0+i5uqFRHV9lChoBkfARIU4aP0ZnGgHS3VoCEdAf1AdNnGsFXV9lChoBkfANsH1WbPQfWgHS2BoCEdAf1E5DZ13dXV9lChoBkfAV/0SeyzHCGgHS0poCEdAf1Hcclw97nV9lChoBkfAR4NOARTS9mgHS4ZoCEdAf1JsH0K7ZnV9lChoBkfATFHUONHYpWgHS1NoCEdAf1J9KEnLJXV9lChoBkfATCOjCYTkAGgHS1BoCEdAf1Lj6N2ki3V9lChoBkfATYGK64Ds+mgHS3FoCEdAf1LwnH/953VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001A15E44EEF0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001A15E44EF80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001A15E44F010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001A15E44F0A0>", "_build": "<function ActorCriticPolicy._build at 0x000001A15E44F130>", "forward": "<function ActorCriticPolicy.forward at 0x000001A15E44F1C0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001A15E44F250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001A15E44F2E0>", "_predict": "<function ActorCriticPolicy._predict at 0x000001A15E44F370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001A15E44F400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001A15E44F490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001A15E44F520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001A15E447280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688627180207732000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr2Gz3WJrs/1CE/Pkt6zL2ug4M8jfLoPQAAAAAAAAAAQ7SlPiAKVT++4As+ofuvvvIRXz5KqqK9AAAAAAAAAADNnPs7XN59OwssH70BDI6+kKZCO0K5IzwAAAAAAAAAAGbJxDy952Y8SDxaOYDBWb7PpQo9KGqzPAAAAAAAAAAAoOpfPk1/wj7hxqG+bWeavmEdgDvIGeW7AAAAAAAAAABAUz0+PE8eP2rPDr1Hmae+2k9QPSgrHL0AAAAAAAAAAHMV7z3sXNi7ZkHePPOP0zx40+M8i22svQAAgD8AAIA/xuQgvg+oNrxOROu6bljxuFdEnD0q/xc6AACAPwAAAAAN87A9BW/wPPZ8zb3Z2Ia+5rekPfBMO70AAAAAAAAAAK3PQD48lfo+D9SSvQzynr71q249g2ZtvAAAAAAAAAAA5pMsvR9W7Ltzihk80B0fPZqoRL0ZagE+AACAPwAAgD8A/7u8mGWvP41Kub4Pr6C+ETyMOTpyeL0AAAAAAAAAAABSa7zWVSc/PMEJPlLHtL4Coak9UPBjvQAAAAAAAAAAAPZKvam+XLzOwxy9wJGIPNHtvT2A1169AACAPwAAgD+KG32+AkOhP05afL4TTqu+KpGzvmyRwjwAAAAAAAAAAM3nKr4DJ2o/k+LNPGY2dr61E3W+ZI8jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHILY/FBIFyMAWyUTRsBjAF0lEdAixamjTKDCnV9lChoBkdAbkj5ylvZRWgHTSwBaAhHQIsXPZkCmuV1fZQoaAZHQHGJkNe+mFdoB00RAWgIR0CLGE0XP7emdX2UKGgGR0ByFXCP6sQvaAdNHAFoCEdAixjq5CngpHV9lChoBkdAcMPqzZ6D5GgHTRMBaAhHQIsbO5z5oGp1fZQoaAZHQHDeU5p8F6loB00mAWgIR0CLG1gwXZXddX2UKGgGR0BzRNnUUfxMaAdNQwFoCEdAixuKNQ0oB3V9lChoBkdAcTXk9ECvHWgHTSMBaAhHQIscnsw+MZR1fZQoaAZHQGy92mgrYoRoB00ZAWgIR0CLHgmw7kn1dX2UKGgGR0Bvo+KMvRJFaAdNEAFoCEdAix72kJrtV3V9lChoBkdASQpegL7XQWgHS9NoCEdAiyCH2IwdsHV9lChoBkdAb4UOpbUwz2gHTSoBaAhHQIshN2Pkq+d1fZQoaAZHQHKQBWtEG7loB00lAWgIR0CLI4SidrftdX2UKGgGR0Bw4uTq0MPSaAdNCQFoCEdAiyUfr0J4S3V9lChoBkdAcBqQsf7rLWgHTScBaAhHQIsmMTN+so51fZQoaAZHQHBe2Q8wHqxoB00yAWgIR0CLJnB55Z8sdX2UKGgGR0BzCmOo5xR3aAdNDAFoCEdAiyZsZYPoV3V9lChoBkdAclqORkmQbWgHTW0BaAhHQIsnwyGi5/d1fZQoaAZHQHEovC/GlyloB0v+aAhHQIsopcVxjrl1fZQoaAZHQG4lcUdq+JxoB00EAWgIR0CLKQzdDYywdX2UKGgGR0BykQPGyX2NaAdNGAFoCEdAiypSGi5/b3V9lChoBkdAcLvYwIt16mgHTU8BaAhHQIsqjc/MW451fZQoaAZHQHPsPHPu5SZoB0v+aAhHQIsrgsGxD9h1fZQoaAZHQG7uHxri2lVoB0v9aAhHQIssWx8lXzV1fZQoaAZHQHJdTgEU0vZoB00wAWgIR0CLLJ56+nIidX2UKGgGR0BxMBqKxcFAaAdNKwFoCEdAizBwzk6tDHV9lChoBkdAcD+wuuieumgHTSIBaAhHQIswo9X9zfd1fZQoaAZHQHEB6UzKs+5oB00RAWgIR0CLM5UutfXxdX2UKGgGR0Buo+c8TzunaAdNCQFoCEdAizRxWkrPMXV9lChoBkdAcfBuQIUrTmgHTSABaAhHQIs1hzkp7Tl1fZQoaAZHQGpfhhpg1FZoB00kAWgIR0CLNgK/EfkndX2UKGgGR0BxxZpZfUnYaAdNKwFoCEdAizfubI91U3V9lChoBkdAbpIVM23rlmgHTR0BaAhHQIs4meJ53Tx1fZQoaAZHQHA8Htv4ubtoB007AWgIR0CLOeXZXdTHdX2UKGgGR0BwcvUy57PZaAdNKQFoCEdAizq0Aksz23V9lChoBkdAcMU0QK8cuWgHTTABaAhHQIs7V1ZDArR1fZQoaAZHQHBrZIMBp6BoB00kAWgIR0CLO7dLxqfwdX2UKGgGR0ByRLs/pt78aAdNEAFoCEdAizvR2B8QZnV9lChoBkdAcgfX6qKgqWgHTcEBaAhHQIs8GIKtxMp1fZQoaAZHQHGmdpyp71JoB006AWgIR0CLPa3EyckMdX2UKGgGR0BQrhBE8aGYaAdN6ANoCEdAiz5IHLRrrXV9lChoBkdAb8ajwhGH6GgHTSIBaAhHQItAMR3/xUh1fZQoaAZHQHGit7OVxCJoB0v0aAhHQItA1BSk0rN1fZQoaAZHQHDNqw6hg3NoB00vAWgIR0CLQQkqMFUydX2UKGgGR0BwzRBmf5DaaAdNAgFoCEdAi2Og+hXbNHV9lChoBkdAb915KODJ2mgHTRsBaAhHQItln5DZ13d1fZQoaAZHQG7BOf29L6FoB00hAWgIR0CLZlBJI1+BdX2UKGgGR0BxoMGpuMuOaAdNCgFoCEdAi2dZpztCzHV9lChoBkdAbbYXjU/fO2gHTSYBaAhHQItoOU6gdwN1fZQoaAZHQHBUCkO7QLNoB00BAWgIR0CLaWBVdX1bdX2UKGgGR0BySAurZJ05aAdL/GgIR0CLadn8KohqdX2UKGgGR0BwmHNorWiDaAdNBQFoCEdAi2n0hV2ic3V9lChoBkdAckP5CngpB2gHTTEBaAhHQItqj6YVqN91fZQoaAZHQG3EH003wTdoB00FAWgIR0CLbKViWmgrdX2UKGgGR0ByZ73cpLElaAdNVwFoCEdAi26NnGsFMnV9lChoBkdAcLZFEiMYM2gHTUUBaAhHQItvpjUd7v51fZQoaAZHQHBre6RQrMFoB00SAWgIR0CLb7iTdLxqdX2UKGgGR0Bv2ZPwd8zAaAdNhAFoCEdAi2/xvegte3V9lChoBkdAcOtmjCYTkGgHTRgBaAhHQItw3UYsNDt1fZQoaAZHQHIFfGEPDpFoB00lAWgIR0CLcVK6FuejdX2UKGgGR0BxYGvMbFS9aAdNCwFoCEdAi3F3d0q6OHV9lChoBkdAcuHaw2VE/mgHTR4BaAhHQIt1Lw6QvHt1fZQoaAZHQHAHHOv+wTxoB00vAWgIR0CLdVfhuO0cdX2UKGgGR0BwUXwlSjxkaAdNAAFoCEdAi3WVHe7+UHV9lChoBkdAcI55paiblWgHTRABaAhHQIt4B8IAwPB1fZQoaAZHQGyrwl0HQhRoB00RAWgIR0CLeC2Ifr8jdX2UKGgGR0BxhzT/hl19aAdNJAFoCEdAi3iZ88cMmXV9lChoBkdATDEMCtA9m2gHS8hoCEdAi3oMiB5HE3V9lChoBkdAcdoxoIv8ImgHTTYBaAhHQIt6vBP9DQZ1fZQoaAZHQHCZPfO2RaJoB00IAWgIR0CLfCz544ZNdX2UKGgGR0Bw+oZqEeySaAdNBAFoCEdAi30Ja7mMfnV9lChoBkdAb69yRSxZ+2gHTTwBaAhHQIt9NEiMYMx1fZQoaAZHQHCX18Ti84BoB0v/aAhHQIt+dsrNGEx1fZQoaAZHQHCOcaKk2xZoB00lAWgIR0CLfromois5dX2UKGgGR0BtXp7AtWdVaAdNBAFoCEdAi37kAPuognV9lChoBkdAb5cf4h2W6mgHTUMBaAhHQIuBc0cfeUJ1fZQoaAZHQE5ZeSB9TgloB0vNaAhHQIuCyzmfXf91fZQoaAZHQHAXVYhdMTNoB00TAWgIR0CLg6CJ40MxdX2UKGgGR0Byqd4Uvf0maAdNEgFoCEdAi4O7ExZdOnV9lChoBkdAcJRIwM6RyWgHS/9oCEdAi4Wf3FkxynV9lChoBkdAcaLSZBsyi2gHTQcBaAhHQIuGeUD+zdF1fZQoaAZHQHITdcW0qpdoB01NAWgIR0CLhyLS/j82dX2UKGgGR0BxQRIZqEeyaAdNDgFoCEdAi4hCqp97W3V9lChoBkdAcSojFhoduGgHTQoBaAhHQIuKI1Nxlxx1fZQoaAZHQG5YQ3xWkrRoB00QAWgIR0CLi4Oc2BJ7dX2UKGgGR0BxQXv6TGHYaAdNHAFoCEdAi4wEOiFj/nV9lChoBkdATpQpz90ihWgHS8poCEdAi4w5T6zmfXV9lChoBkdAbfxpDeCTU2gHTQABaAhHQIuMO1pj+aV1fZQoaAZHQG8LcPnSv1VoB00FAWgIR0CLjKR/3FkydX2UKGgGR0BxG5JnQID6aAdNVQFoCEdAi4zCu2Zy/HV9lChoBkdAc2jV+Zw4sGgHTTYBaAhHQIuOeYfGMn91fZQoaAZHQHLIjVc2R7toB00QAWgIR0CLkMBg/keZdX2UKGgGR0BwXqCOFQEZaAdNIgFoCEdAi5Jz6i0v5HV9lChoBkdAcA2LdvbXYmgHTSIBaAhHQIuSjor4Fid1fZQoaAZHQG4gT4+KTB9oB00OAWgIR0CLk02iL2pRdX2UKGgGR0Bx3tygf2boaAdNDgFoCEdAi5QcaXKKYXV9lChoBkdAb/m+fRNRFmgHTRIBaAhHQIuU8bJfYz11fZQoaAZHQG40has6q81oB00CAWgIR0CLlTstTUAldX2UKGgGR0Byn4BgeA/caAdL62gIR0CLlx1EE1VHdX2UKGgGR0BxPgU1yeZoaAdNEAFoCEdAi5e7Hp8neHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060f21bb0b30d8237f1623c65115f1c70e53c4c7b4e0a61ae170ebd4b7ed9e12
|
3 |
+
size 146720
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,20 +41,35 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000001A15E44EEF0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001A15E44EF80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001A15E44F010>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001A15E44F0A0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000001A15E44F130>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000001A15E44F1C0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x000001A15E44F250>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001A15E44F2E0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000001A15E44F370>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001A15E44F400>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001A15E44F490>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000001A15E44F520>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001A15E447280>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1688627180207732000,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr2Gz3WJrs/1CE/Pkt6zL2ug4M8jfLoPQAAAAAAAAAAQ7SlPiAKVT++4As+ofuvvvIRXz5KqqK9AAAAAAAAAADNnPs7XN59OwssH70BDI6+kKZCO0K5IzwAAAAAAAAAAGbJxDy952Y8SDxaOYDBWb7PpQo9KGqzPAAAAAAAAAAAoOpfPk1/wj7hxqG+bWeavmEdgDvIGeW7AAAAAAAAAABAUz0+PE8eP2rPDr1Hmae+2k9QPSgrHL0AAAAAAAAAAHMV7z3sXNi7ZkHePPOP0zx40+M8i22svQAAgD8AAIA/xuQgvg+oNrxOROu6bljxuFdEnD0q/xc6AACAPwAAAAAN87A9BW/wPPZ8zb3Z2Ia+5rekPfBMO70AAAAAAAAAAK3PQD48lfo+D9SSvQzynr71q249g2ZtvAAAAAAAAAAA5pMsvR9W7Ltzihk80B0fPZqoRL0ZagE+AACAPwAAgD8A/7u8mGWvP41Kub4Pr6C+ETyMOTpyeL0AAAAAAAAAAABSa7zWVSc/PMEJPlLHtL4Coak9UPBjvQAAAAAAAAAAAPZKvam+XLzOwxy9wJGIPNHtvT2A1169AACAPwAAgD+KG32+AkOhP05afL4TTqu+KpGzvmyRwjwAAAAAAAAAAM3nKr4DJ2o/k+LNPGY2dr61E3W+ZI8jPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHILY/FBIFyMAWyUTRsBjAF0lEdAixamjTKDCnV9lChoBkdAbkj5ylvZRWgHTSwBaAhHQIsXPZkCmuV1fZQoaAZHQHGJkNe+mFdoB00RAWgIR0CLGE0XP7emdX2UKGgGR0ByFXCP6sQvaAdNHAFoCEdAixjq5CngpHV9lChoBkdAcMPqzZ6D5GgHTRMBaAhHQIsbO5z5oGp1fZQoaAZHQHDeU5p8F6loB00mAWgIR0CLG1gwXZXddX2UKGgGR0BzRNnUUfxMaAdNQwFoCEdAixuKNQ0oB3V9lChoBkdAcTXk9ECvHWgHTSMBaAhHQIscnsw+MZR1fZQoaAZHQGy92mgrYoRoB00ZAWgIR0CLHgmw7kn1dX2UKGgGR0Bvo+KMvRJFaAdNEAFoCEdAix72kJrtV3V9lChoBkdASQpegL7XQWgHS9NoCEdAiyCH2IwdsHV9lChoBkdAb4UOpbUwz2gHTSoBaAhHQIshN2Pkq+d1fZQoaAZHQHKQBWtEG7loB00lAWgIR0CLI4SidrftdX2UKGgGR0Bw4uTq0MPSaAdNCQFoCEdAiyUfr0J4S3V9lChoBkdAcBqQsf7rLWgHTScBaAhHQIsmMTN+so51fZQoaAZHQHBe2Q8wHqxoB00yAWgIR0CLJnB55Z8sdX2UKGgGR0BzCmOo5xR3aAdNDAFoCEdAiyZsZYPoV3V9lChoBkdAclqORkmQbWgHTW0BaAhHQIsnwyGi5/d1fZQoaAZHQHEovC/GlyloB0v+aAhHQIsopcVxjrl1fZQoaAZHQG4lcUdq+JxoB00EAWgIR0CLKQzdDYywdX2UKGgGR0BykQPGyX2NaAdNGAFoCEdAiypSGi5/b3V9lChoBkdAcLvYwIt16mgHTU8BaAhHQIsqjc/MW451fZQoaAZHQHPsPHPu5SZoB0v+aAhHQIsrgsGxD9h1fZQoaAZHQG7uHxri2lVoB0v9aAhHQIssWx8lXzV1fZQoaAZHQHJdTgEU0vZoB00wAWgIR0CLLJ56+nIidX2UKGgGR0BxMBqKxcFAaAdNKwFoCEdAizBwzk6tDHV9lChoBkdAcD+wuuieumgHTSIBaAhHQIswo9X9zfd1fZQoaAZHQHEB6UzKs+5oB00RAWgIR0CLM5UutfXxdX2UKGgGR0Buo+c8TzunaAdNCQFoCEdAizRxWkrPMXV9lChoBkdAcfBuQIUrTmgHTSABaAhHQIs1hzkp7Tl1fZQoaAZHQGpfhhpg1FZoB00kAWgIR0CLNgK/EfkndX2UKGgGR0BxxZpZfUnYaAdNKwFoCEdAizfubI91U3V9lChoBkdAbpIVM23rlmgHTR0BaAhHQIs4meJ53Tx1fZQoaAZHQHA8Htv4ubtoB007AWgIR0CLOeXZXdTHdX2UKGgGR0BwcvUy57PZaAdNKQFoCEdAizq0Aksz23V9lChoBkdAcMU0QK8cuWgHTTABaAhHQIs7V1ZDArR1fZQoaAZHQHBrZIMBp6BoB00kAWgIR0CLO7dLxqfwdX2UKGgGR0ByRLs/pt78aAdNEAFoCEdAizvR2B8QZnV9lChoBkdAcgfX6qKgqWgHTcEBaAhHQIs8GIKtxMp1fZQoaAZHQHGmdpyp71JoB006AWgIR0CLPa3EyckMdX2UKGgGR0BQrhBE8aGYaAdN6ANoCEdAiz5IHLRrrXV9lChoBkdAb8ajwhGH6GgHTSIBaAhHQItAMR3/xUh1fZQoaAZHQHGit7OVxCJoB0v0aAhHQItA1BSk0rN1fZQoaAZHQHDNqw6hg3NoB00vAWgIR0CLQQkqMFUydX2UKGgGR0BwzRBmf5DaaAdNAgFoCEdAi2Og+hXbNHV9lChoBkdAb915KODJ2mgHTRsBaAhHQItln5DZ13d1fZQoaAZHQG7BOf29L6FoB00hAWgIR0CLZlBJI1+BdX2UKGgGR0BxoMGpuMuOaAdNCgFoCEdAi2dZpztCzHV9lChoBkdAbbYXjU/fO2gHTSYBaAhHQItoOU6gdwN1fZQoaAZHQHBUCkO7QLNoB00BAWgIR0CLaWBVdX1bdX2UKGgGR0BySAurZJ05aAdL/GgIR0CLadn8KohqdX2UKGgGR0BwmHNorWiDaAdNBQFoCEdAi2n0hV2ic3V9lChoBkdAckP5CngpB2gHTTEBaAhHQItqj6YVqN91fZQoaAZHQG3EH003wTdoB00FAWgIR0CLbKViWmgrdX2UKGgGR0ByZ73cpLElaAdNVwFoCEdAi26NnGsFMnV9lChoBkdAcLZFEiMYM2gHTUUBaAhHQItvpjUd7v51fZQoaAZHQHBre6RQrMFoB00SAWgIR0CLb7iTdLxqdX2UKGgGR0Bv2ZPwd8zAaAdNhAFoCEdAi2/xvegte3V9lChoBkdAcOtmjCYTkGgHTRgBaAhHQItw3UYsNDt1fZQoaAZHQHIFfGEPDpFoB00lAWgIR0CLcVK6FuejdX2UKGgGR0BxYGvMbFS9aAdNCwFoCEdAi3F3d0q6OHV9lChoBkdAcuHaw2VE/mgHTR4BaAhHQIt1Lw6QvHt1fZQoaAZHQHAHHOv+wTxoB00vAWgIR0CLdVfhuO0cdX2UKGgGR0BwUXwlSjxkaAdNAAFoCEdAi3WVHe7+UHV9lChoBkdAcI55paiblWgHTRABaAhHQIt4B8IAwPB1fZQoaAZHQGyrwl0HQhRoB00RAWgIR0CLeC2Ifr8jdX2UKGgGR0BxhzT/hl19aAdNJAFoCEdAi3iZ88cMmXV9lChoBkdATDEMCtA9m2gHS8hoCEdAi3oMiB5HE3V9lChoBkdAcdoxoIv8ImgHTTYBaAhHQIt6vBP9DQZ1fZQoaAZHQHCZPfO2RaJoB00IAWgIR0CLfCz544ZNdX2UKGgGR0Bw+oZqEeySaAdNBAFoCEdAi30Ja7mMfnV9lChoBkdAb69yRSxZ+2gHTTwBaAhHQIt9NEiMYMx1fZQoaAZHQHCX18Ti84BoB0v/aAhHQIt+dsrNGEx1fZQoaAZHQHCOcaKk2xZoB00lAWgIR0CLfromois5dX2UKGgGR0BtXp7AtWdVaAdNBAFoCEdAi37kAPuognV9lChoBkdAb5cf4h2W6mgHTUMBaAhHQIuBc0cfeUJ1fZQoaAZHQE5ZeSB9TgloB0vNaAhHQIuCyzmfXf91fZQoaAZHQHAXVYhdMTNoB00TAWgIR0CLg6CJ40MxdX2UKGgGR0Byqd4Uvf0maAdNEgFoCEdAi4O7ExZdOnV9lChoBkdAcJRIwM6RyWgHS/9oCEdAi4Wf3FkxynV9lChoBkdAcaLSZBsyi2gHTQcBaAhHQIuGeUD+zdF1fZQoaAZHQHITdcW0qpdoB01NAWgIR0CLhyLS/j82dX2UKGgGR0BxQRIZqEeyaAdNDgFoCEdAi4hCqp97W3V9lChoBkdAcSojFhoduGgHTQoBaAhHQIuKI1Nxlxx1fZQoaAZHQG5YQ3xWkrRoB00QAWgIR0CLi4Oc2BJ7dX2UKGgGR0BxQXv6TGHYaAdNHAFoCEdAi4wEOiFj/nV9lChoBkdATpQpz90ihWgHS8poCEdAi4w5T6zmfXV9lChoBkdAbfxpDeCTU2gHTQABaAhHQIuMO1pj+aV1fZQoaAZHQG8LcPnSv1VoB00FAWgIR0CLjKR/3FkydX2UKGgGR0BxG5JnQID6aAdNVQFoCEdAi4zCu2Zy/HV9lChoBkdAc2jV+Zw4sGgHTTYBaAhHQIuOeYfGMn91fZQoaAZHQHLIjVc2R7toB00QAWgIR0CLkMBg/keZdX2UKGgGR0BwXqCOFQEZaAdNIgFoCEdAi5Jz6i0v5HV9lChoBkdAcA2LdvbXYmgHTSIBaAhHQIuSjor4Fid1fZQoaAZHQG4gT4+KTB9oB00OAWgIR0CLk02iL2pRdX2UKGgGR0Bx3tygf2boaAdNDgFoCEdAi5QcaXKKYXV9lChoBkdAb/m+fRNRFmgHTRIBaAhHQIuU8bJfYz11fZQoaAZHQG40has6q81oB00CAWgIR0CLlTstTUAldX2UKGgGR0Byn4BgeA/caAdL62gIR0CLlx1EE1VHdX2UKGgGR0BxPgU1yeZoaAdNEAFoCEdAi5e7Hp8neHVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"dtype": "float32",
|
74 |
"bounded_below": "[ True True True True True True True True]",
|
75 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVbwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjD9EOlxhbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21c8cbffa55e0b75c57d4acfe135b191849d79eb0c8d855b3eb2fa76540bdf8f
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c29631fc2dfdac079d3855ed78a9851dbb8384f0bfd6ae512ab0c64041961e73
|
3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
-
- OpenAI Gym: 0.
|
|
|
1 |
+
- OS: Windows-10-10.0.19044-SP0 10.0.19044
|
2 |
+
- Python: 3.10.9
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 1.6.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.19.0
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 258.29049860000003, "std_reward": 21.1137140787956, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-06T15:38:30.623343"}
|