Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1352.47 +/- 70.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eddc695387d7b236a6a8ec201c58bd3dcc87cc7c34b7531457cfbfbe919e621b
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa47be43940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa47be439d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa47be43a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa47be43af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa47be43b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa47be43c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa47be43ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa47be43d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa47be43dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa47be43e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa47be43ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa47be43f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa47be44e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679678602212581412,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzh575+DMe/nICsv8dyvr+Snta+IkhuP+/Pbz5FVmI+S1agv2yshMD1vw+/XFj4vFLZ0D67xFfA/jRsvUYaEr6laMo9a+1Zv5epjT4jBSo+wXBoP4MZBsA/0Em/LCGXPuS5CMDbndw+EkcMPyjBJz+5owM/W6eDv9j2gcDO88a8GriwPoOSNL+iFJi/HKXTvvmvgL874E+/64xwvrNHjj8sXHo/gJRRvIuqID+uxTS/rryQv5O0sD9WriG/g49fvmvkMj8ls8C+CWhOv3CNk7xbqe8+253cPhJHDD9CVcO/JwzIP14qpbwtfRQ/AFjbP0w5KsCcP9A/2JCMvhNW+r608BW9nkqKQHPlkD9dCAu/Uw/gvz4Irz9WGpS+9FsJQCjioD2mdwnAnX2Tv7EEcr7n04K/ZIZnPKgz8T/3hJK+W6nvPtud3D4SRww/QlXDv7rmmD/Y1kI+aRcgP38m5D+/et2/VeY6Pnc7Fb/RUCu/IhlgPzLdSryuNXk9X4Ejv/6hS742Qhu/xw8oP1JEU78c4cS9Rj6fv8QCYr/sp+69boeLu8GeEz9kEK4/bKkRwFup7z7bndw+EkcMP0JVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAkHXy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUyP6PQAAAADRGOu/AAAAANLNBr4AAAAADBIBQAAAAABYjUI9AAAAAL+X8j8AAAAAdY/MvAAAAABbaOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATWAqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNRV7wAAAAAhg8AwAAAAAAhOrk8AAAAAHKf2z8AAAAA60rwvAAAAABtRfE/AAAAAHPB370AAAAAdh7xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKLzDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8iBu9AAAAAOip578AAAAAktgxvQAAAACnFN8/AAAAAPmcXL0AAAAAwoXaPwAAAADIfKK9AAAAAO1G5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJsYo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4o5PAAAAAAcdey/AAAAAH57Yr0AAAAArUDaPwAAAACsjDc8AAAAAKbU5D8AAAAAs2fTvQAAAABQKeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpGvDvVmSSMAWyUTegDjAF0lEdAwF33SApazXV9lChoBkdAnnvj4QBgeGgHTegDaAhHQMBey2RaHKx1fZQoaAZHQJ3GZmqYJE9oB03oA2gIR0DAX3dNahYedX2UKGgGR0CdgYE61b7kaAdN6ANoCEdAwF+dtALRbHV9lChoBkdAmmixD5TIemgHTegDaAhHQMBg5O+yquN1fZQoaAZHQJmszeMyaeBoB03oA2gIR0DAYgsENe+mdX2UKGgGR0CO7wkvboKVaAdN6ANoCEdAwGMcN0/4ZnV9lChoBkdAlMo4Pf8/EGgHTegDaAhHQMBjWRCQcPx1fZQoaAZHQJoY7T7VJ+VoB03oA2gIR0DAZM19v0iAdX2UKGgGR0CcejMFUyYYaAdN6ANoCEdAwGWlAqNIb3V9lChoBkdAm/hMmF8G92gHTegDaAhHQMBmVeBpYcN1fZQoaAZHQJ1DAAfdRBNoB03oA2gIR0DAZn0OiFj/dX2UKGgGR0CfRe4iX6ZZaAdN6ANoCEdAwGfFnWattHV9lChoBkdAnyDNqYZ2p2gHTegDaAhHQMBonVqesgd1fZQoaAZHQJ5qS2nbZe1oB03oA2gIR0DAaYiaRZEEdX2UKGgGR0CfBaoJRfnfaAdN6ANoCEdAwGnAKl54W3V9lChoBkdAny0kqMFUymgHTegDaAhHQMBroq2SdOJ1fZQoaAZHQJ0D6clPactoB03oA2gIR0DAbH9F6RhddX2UKGgGR0CbUdmlqJuVaAdN6ANoCEdAwG0rd9lVcXV9lChoBkdAnPmRgqmTDGgHTegDaAhHQMBtUUgSvkl1fZQoaAZHQJrS1lCkXUJoB03oA2gIR0DAbpyshgVodX2UKGgGR0CcxeUGFBY3aAdN6ANoCEdAwG9wW+GoJnV9lChoBkdAm4XoZMtbtGgHTegDaAhHQMBwHRjJ+2F1fZQoaAZHQJuYjxYq5LBoB03oA2gIR0DAcEG5Yoy9dX2UKGgGR0CZnXX3QD3eaAdN6ANoCEdAwHIVKNAC4nV9lChoBkdAmpN3c+JP7GgHTegDaAhHQMBzTgG8mKJ1fZQoaAZHQJwzATufEn9oB03oA2gIR0DAc/kkyDZldX2UKGgGR0CcymivxH5KaAdN6ANoCEdAwHQgOT7l73V9lChoBkdAmxaeZw4sE2gHTegDaAhHQMB1a/FrEcd1fZQoaAZHQJycav7m+0xoB03oA2gIR0DAdkFQ0oBrdX2UKGgGR0CeOPLhrFfiaAdN6ANoCEdAwHbqus90R3V9lChoBkdAnBoi3CsOomgHTegDaAhHQMB3EmmtQsR1fZQoaAZHQJ1YMy57PY5oB03oA2gIR0DAeIJtBOYZdX2UKGgGR0CcKMVawD/3aAdN6ANoCEdAwHnE0D2alXV9lChoBkdAmd546bONYWgHTegDaAhHQMB6xfmLcbl1fZQoaAZHQJb1thnanJloB03oA2gIR0DAeux+pfhNdX2UKGgGR0CZmjna37UHaAdN6ANoCEdAwHw0Q5myxHV9lChoBkdAm+8u5vtMPGgHTegDaAhHQMB9Dp6Y3Nt1fZQoaAZHQJzBzu0CzTpoB03oA2gIR0DAfbpxYJVsdX2UKGgGR0CYfEqrzXjEaAdN6ANoCEdAwH3f5zo2XXV9lChoBkdAnMVkf5k9U2gHTegDaAhHQMB/KVwxWT51fZQoaAZHQJwaNgrpaA5oB03oA2gIR0DAgCcsUZeidX2UKGgGR0Cao8th/iHZaAdN6ANoCEdAwIEoN+b3GnV9lChoBkdAm96PJNj9XWgHTegDaAhHQMCBY4MfA9F1fZQoaAZHQJe5v8HfMwFoB03oA2gIR0DAgwhujynUdX2UKGgGR0CUjrCtihFmaAdN6ANoCEdAwIPiWBSUDHV9lChoBkdAmxRs6q8142gHTegDaAhHQMCEji53C9B1fZQoaAZHQJkhMLb5/LFoB03oA2gIR0DAhLZzgdfcdX2UKGgGR0Ca7FzTnaFmaAdN6ANoCEdAwIX7R4QjEHV9lChoBkdAnPTUSAYpD2gHTegDaAhHQMCG1oKD0191fZQoaAZHQJwNl4NZvDRoB03oA2gIR0DAh59pItlJdX2UKGgGR0Cdq+GViWmhaAdN6ANoCEdAwIfXIQOFxnV9lChoBkdAnCBZprULD2gHTegDaAhHQMCJ0m51/2F1fZQoaAZHQJsiIExIre9oB03oA2gIR0DAirNzXBgvdX2UKGgGR0CcPBEcsDnvaAdN6ANoCEdAwItfQvYe1nV9lChoBkdAlLCwtrbg0mgHTegDaAhHQMCLhn5Jsft1fZQoaAZHQJ1eqNLlFMJoB03oA2gIR0DAjNL5dnkDdX2UKGgGR0CVEEQQcxTLaAdN6ANoCEdAwI2pn27FsHV9lChoBkdAlzKUcS5AhWgHTegDaAhHQMCOU4LCvX91fZQoaAZHQJcwQ1Q66rhoB03oA2gIR0DAjnoMvyskdX2UKGgGR0CYMKw8GLUDaAdN6ANoCEdAwJAhzdUKiXV9lChoBkdAmEbaOHWSU2gHTegDaAhHQMCRcLDIikh1fZQoaAZHQJpzyDUVi4JoB03oA2gIR0DAkjXe1rqMdX2UKGgGR0CU0KuLJjlQaAdN6ANoCEdAwJJcB+Wnj3V9lChoBkdAnEXJfdAPd2gHTegDaAhHQMCTpKTjebd1fZQoaAZHQJr1nSH/LkloB03oA2gIR0DAlH7C79Q5dX2UKGgGR0CabULsrupkaAdN6ANoCEdAwJUs1D0Dl3V9lChoBkdAmZMfM4cWCWgHTegDaAhHQMCVU1R+BpZ1fZQoaAZHQJP2hb1RLsdoB03oA2gIR0DAlqKFdszmdX2UKGgGR0CXdtM8ox5+aAdN6ANoCEdAwJfh9c8klnV9lChoBkdAjiyYIa99MWgHTegDaAhHQMCY9XT3IuJ1fZQoaAZHQJD5R1IRRMxoB03oA2gIR0DAmTVE9dNWdX2UKGgGR0CRriX18LKFaAdN6ANoCEdAwJqU7e2uxXV9lChoBkdAlW5Etuk1uWgHTegDaAhHQMCbgqIi1Rd1fZQoaAZHQJau+5e7cwhoB03oA2gIR0DAnEOSOinHdX2UKGgGR0CRtzNDc/MXaAdN6ANoCEdAwJxsMsH0LHV9lChoBkdAkkNhqj8DS2gHTegDaAhHQMCd0po0ygx1fZQoaAZHQJaGvfVI7NloB03oA2gIR0DAnuHrUsnRdX2UKGgGR0CSq3O8CgbqaAdN6ANoCEdAwJ/z0W/JvHV9lChoBkdAlaszSgGr0mgHTegDaAhHQMCgM0d7v5R1fZQoaAZHQJZuNikO7QNoB03oA2gIR0DAofV/vv0AdX2UKGgGR0CX0h3x4IKMaAdN6ANoCEdAwKLgFiay8nV9lChoBkdAmOG4wudwvWgHTegDaAhHQMCjlSbH6uZ1fZQoaAZHQJs2rjdYW+JoB03oA2gIR0DAo78c0cfedX2UKGgGR0CYHCX668QJaAdN6ANoCEdAwKUVbxmTT3V9lChoBkdAlsOyYkVvdmgHTegDaAhHQMCl9Q1ivxJ1fZQoaAZHQJiD7VhCtzVoB03oA2gIR0DApt0lAu7IdX2UKGgGR0CV2HJXQtz0aAdN6ANoCEdAwKcU/oq0+nV9lChoBkdAkc2dXcQAdWgHTegDaAhHQMCpBbeEZix1fZQoaAZHQJlmdRR/EwZoB03oA2gIR0DAqdxNsWO7dX2UKGgGR0CSAS+zt1IRaAdN6ANoCEdAwKqLb6guiHV9lChoBkdAk2DEZBLPEGgHTegDaAhHQMCqstaQmu11fZQoaAZHQJLJrWK/EfloB03oA2gIR0DAq/2TxG2DdX2UKGgGR0CFiy/D+BH1aAdN6ANoCEdAwKzejFAE+3V9lChoBkdAkZsI9xIatWgHTegDaAhHQMCtjLpiZv11fZQoaAZHQJRs9vjwQUZoB03oA2gIR0DArbUL2HtXdX2UKGgGR0CSgDuf29L6aAdN6ANoCEdAwK+RWkJrtXV9lChoBkdAk0ncOPNmlWgHTegDaAhHQMCwyjSgGr11fZQoaAZHQJUCn6l+EytoB03oA2gIR0DAsX6lchTwdX2UKGgGR0CSIr1CPZIyaAdN6ANoCEdAwLGl7l7tzHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e34101875c4bf2a9ba44ff2212809716095a7911e5387bc2c32f61ed3d71209f
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b16bea799be4b35f4d4d81fab3898ce3cd7f926c23152a6fde91f6fc20e6a0d0
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa47be43940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa47be439d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa47be43a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa47be43af0>", "_build": "<function ActorCriticPolicy._build at 0x7fa47be43b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fa47be43c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa47be43ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa47be43d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa47be43dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa47be43e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa47be43ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa47be43f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa47be44e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679678602212581412, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzh575+DMe/nICsv8dyvr+Snta+IkhuP+/Pbz5FVmI+S1agv2yshMD1vw+/XFj4vFLZ0D67xFfA/jRsvUYaEr6laMo9a+1Zv5epjT4jBSo+wXBoP4MZBsA/0Em/LCGXPuS5CMDbndw+EkcMPyjBJz+5owM/W6eDv9j2gcDO88a8GriwPoOSNL+iFJi/HKXTvvmvgL874E+/64xwvrNHjj8sXHo/gJRRvIuqID+uxTS/rryQv5O0sD9WriG/g49fvmvkMj8ls8C+CWhOv3CNk7xbqe8+253cPhJHDD9CVcO/JwzIP14qpbwtfRQ/AFjbP0w5KsCcP9A/2JCMvhNW+r608BW9nkqKQHPlkD9dCAu/Uw/gvz4Irz9WGpS+9FsJQCjioD2mdwnAnX2Tv7EEcr7n04K/ZIZnPKgz8T/3hJK+W6nvPtud3D4SRww/QlXDv7rmmD/Y1kI+aRcgP38m5D+/et2/VeY6Pnc7Fb/RUCu/IhlgPzLdSryuNXk9X4Ejv/6hS742Qhu/xw8oP1JEU78c4cS9Rj6fv8QCYr/sp+69boeLu8GeEz9kEK4/bKkRwFup7z7bndw+EkcMP0JVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAkHXy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUyP6PQAAAADRGOu/AAAAANLNBr4AAAAADBIBQAAAAABYjUI9AAAAAL+X8j8AAAAAdY/MvAAAAABbaOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATWAqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNRV7wAAAAAhg8AwAAAAAAhOrk8AAAAAHKf2z8AAAAA60rwvAAAAABtRfE/AAAAAHPB370AAAAAdh7xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKLzDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8iBu9AAAAAOip578AAAAAktgxvQAAAACnFN8/AAAAAPmcXL0AAAAAwoXaPwAAAADIfKK9AAAAAO1G5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJsYo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4o5PAAAAAAcdey/AAAAAH57Yr0AAAAArUDaPwAAAACsjDc8AAAAAKbU5D8AAAAAs2fTvQAAAABQKeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpGvDvVmSSMAWyUTegDjAF0lEdAwF33SApazXV9lChoBkdAnnvj4QBgeGgHTegDaAhHQMBey2RaHKx1fZQoaAZHQJ3GZmqYJE9oB03oA2gIR0DAX3dNahYedX2UKGgGR0CdgYE61b7kaAdN6ANoCEdAwF+dtALRbHV9lChoBkdAmmixD5TIemgHTegDaAhHQMBg5O+yquN1fZQoaAZHQJmszeMyaeBoB03oA2gIR0DAYgsENe+mdX2UKGgGR0CO7wkvboKVaAdN6ANoCEdAwGMcN0/4ZnV9lChoBkdAlMo4Pf8/EGgHTegDaAhHQMBjWRCQcPx1fZQoaAZHQJoY7T7VJ+VoB03oA2gIR0DAZM19v0iAdX2UKGgGR0CcejMFUyYYaAdN6ANoCEdAwGWlAqNIb3V9lChoBkdAm/hMmF8G92gHTegDaAhHQMBmVeBpYcN1fZQoaAZHQJ1DAAfdRBNoB03oA2gIR0DAZn0OiFj/dX2UKGgGR0CfRe4iX6ZZaAdN6ANoCEdAwGfFnWattHV9lChoBkdAnyDNqYZ2p2gHTegDaAhHQMBonVqesgd1fZQoaAZHQJ5qS2nbZe1oB03oA2gIR0DAaYiaRZEEdX2UKGgGR0CfBaoJRfnfaAdN6ANoCEdAwGnAKl54W3V9lChoBkdAny0kqMFUymgHTegDaAhHQMBroq2SdOJ1fZQoaAZHQJ0D6clPactoB03oA2gIR0DAbH9F6RhddX2UKGgGR0CbUdmlqJuVaAdN6ANoCEdAwG0rd9lVcXV9lChoBkdAnPmRgqmTDGgHTegDaAhHQMBtUUgSvkl1fZQoaAZHQJrS1lCkXUJoB03oA2gIR0DAbpyshgVodX2UKGgGR0CcxeUGFBY3aAdN6ANoCEdAwG9wW+GoJnV9lChoBkdAm4XoZMtbtGgHTegDaAhHQMBwHRjJ+2F1fZQoaAZHQJuYjxYq5LBoB03oA2gIR0DAcEG5Yoy9dX2UKGgGR0CZnXX3QD3eaAdN6ANoCEdAwHIVKNAC4nV9lChoBkdAmpN3c+JP7GgHTegDaAhHQMBzTgG8mKJ1fZQoaAZHQJwzATufEn9oB03oA2gIR0DAc/kkyDZldX2UKGgGR0CcymivxH5KaAdN6ANoCEdAwHQgOT7l73V9lChoBkdAmxaeZw4sE2gHTegDaAhHQMB1a/FrEcd1fZQoaAZHQJycav7m+0xoB03oA2gIR0DAdkFQ0oBrdX2UKGgGR0CeOPLhrFfiaAdN6ANoCEdAwHbqus90R3V9lChoBkdAnBoi3CsOomgHTegDaAhHQMB3EmmtQsR1fZQoaAZHQJ1YMy57PY5oB03oA2gIR0DAeIJtBOYZdX2UKGgGR0CcKMVawD/3aAdN6ANoCEdAwHnE0D2alXV9lChoBkdAmd546bONYWgHTegDaAhHQMB6xfmLcbl1fZQoaAZHQJb1thnanJloB03oA2gIR0DAeux+pfhNdX2UKGgGR0CZmjna37UHaAdN6ANoCEdAwHw0Q5myxHV9lChoBkdAm+8u5vtMPGgHTegDaAhHQMB9Dp6Y3Nt1fZQoaAZHQJzBzu0CzTpoB03oA2gIR0DAfbpxYJVsdX2UKGgGR0CYfEqrzXjEaAdN6ANoCEdAwH3f5zo2XXV9lChoBkdAnMVkf5k9U2gHTegDaAhHQMB/KVwxWT51fZQoaAZHQJwaNgrpaA5oB03oA2gIR0DAgCcsUZeidX2UKGgGR0Cao8th/iHZaAdN6ANoCEdAwIEoN+b3GnV9lChoBkdAm96PJNj9XWgHTegDaAhHQMCBY4MfA9F1fZQoaAZHQJe5v8HfMwFoB03oA2gIR0DAgwhujynUdX2UKGgGR0CUjrCtihFmaAdN6ANoCEdAwIPiWBSUDHV9lChoBkdAmxRs6q8142gHTegDaAhHQMCEji53C9B1fZQoaAZHQJkhMLb5/LFoB03oA2gIR0DAhLZzgdfcdX2UKGgGR0Ca7FzTnaFmaAdN6ANoCEdAwIX7R4QjEHV9lChoBkdAnPTUSAYpD2gHTegDaAhHQMCG1oKD0191fZQoaAZHQJwNl4NZvDRoB03oA2gIR0DAh59pItlJdX2UKGgGR0Cdq+GViWmhaAdN6ANoCEdAwIfXIQOFxnV9lChoBkdAnCBZprULD2gHTegDaAhHQMCJ0m51/2F1fZQoaAZHQJsiIExIre9oB03oA2gIR0DAirNzXBgvdX2UKGgGR0CcPBEcsDnvaAdN6ANoCEdAwItfQvYe1nV9lChoBkdAlLCwtrbg0mgHTegDaAhHQMCLhn5Jsft1fZQoaAZHQJ1eqNLlFMJoB03oA2gIR0DAjNL5dnkDdX2UKGgGR0CVEEQQcxTLaAdN6ANoCEdAwI2pn27FsHV9lChoBkdAlzKUcS5AhWgHTegDaAhHQMCOU4LCvX91fZQoaAZHQJcwQ1Q66rhoB03oA2gIR0DAjnoMvyskdX2UKGgGR0CYMKw8GLUDaAdN6ANoCEdAwJAhzdUKiXV9lChoBkdAmEbaOHWSU2gHTegDaAhHQMCRcLDIikh1fZQoaAZHQJpzyDUVi4JoB03oA2gIR0DAkjXe1rqMdX2UKGgGR0CU0KuLJjlQaAdN6ANoCEdAwJJcB+Wnj3V9lChoBkdAnEXJfdAPd2gHTegDaAhHQMCTpKTjebd1fZQoaAZHQJr1nSH/LkloB03oA2gIR0DAlH7C79Q5dX2UKGgGR0CabULsrupkaAdN6ANoCEdAwJUs1D0Dl3V9lChoBkdAmZMfM4cWCWgHTegDaAhHQMCVU1R+BpZ1fZQoaAZHQJP2hb1RLsdoB03oA2gIR0DAlqKFdszmdX2UKGgGR0CXdtM8ox5+aAdN6ANoCEdAwJfh9c8klnV9lChoBkdAjiyYIa99MWgHTegDaAhHQMCY9XT3IuJ1fZQoaAZHQJD5R1IRRMxoB03oA2gIR0DAmTVE9dNWdX2UKGgGR0CRriX18LKFaAdN6ANoCEdAwJqU7e2uxXV9lChoBkdAlW5Etuk1uWgHTegDaAhHQMCbgqIi1Rd1fZQoaAZHQJau+5e7cwhoB03oA2gIR0DAnEOSOinHdX2UKGgGR0CRtzNDc/MXaAdN6ANoCEdAwJxsMsH0LHV9lChoBkdAkkNhqj8DS2gHTegDaAhHQMCd0po0ygx1fZQoaAZHQJaGvfVI7NloB03oA2gIR0DAnuHrUsnRdX2UKGgGR0CSq3O8CgbqaAdN6ANoCEdAwJ/z0W/JvHV9lChoBkdAlaszSgGr0mgHTegDaAhHQMCgM0d7v5R1fZQoaAZHQJZuNikO7QNoB03oA2gIR0DAofV/vv0AdX2UKGgGR0CX0h3x4IKMaAdN6ANoCEdAwKLgFiay8nV9lChoBkdAmOG4wudwvWgHTegDaAhHQMCjlSbH6uZ1fZQoaAZHQJs2rjdYW+JoB03oA2gIR0DAo78c0cfedX2UKGgGR0CYHCX668QJaAdN6ANoCEdAwKUVbxmTT3V9lChoBkdAlsOyYkVvdmgHTegDaAhHQMCl9Q1ivxJ1fZQoaAZHQJiD7VhCtzVoB03oA2gIR0DApt0lAu7IdX2UKGgGR0CV2HJXQtz0aAdN6ANoCEdAwKcU/oq0+nV9lChoBkdAkc2dXcQAdWgHTegDaAhHQMCpBbeEZix1fZQoaAZHQJlmdRR/EwZoB03oA2gIR0DAqdxNsWO7dX2UKGgGR0CSAS+zt1IRaAdN6ANoCEdAwKqLb6guiHV9lChoBkdAk2DEZBLPEGgHTegDaAhHQMCqstaQmu11fZQoaAZHQJLJrWK/EfloB03oA2gIR0DAq/2TxG2DdX2UKGgGR0CFiy/D+BH1aAdN6ANoCEdAwKzejFAE+3V9lChoBkdAkZsI9xIatWgHTegDaAhHQMCtjLpiZv11fZQoaAZHQJRs9vjwQUZoB03oA2gIR0DArbUL2HtXdX2UKGgGR0CSgDuf29L6aAdN6ANoCEdAwK+RWkJrtXV9lChoBkdAk0ncOPNmlWgHTegDaAhHQMCwyjSgGr11fZQoaAZHQJUCn6l+EytoB03oA2gIR0DAsX6lchTwdX2UKGgGR0CSIr1CPZIyaAdN6ANoCEdAwLGl7l7tzHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd66159a4c33f5eaa6c47f7c819791981ca580e2a5522eda6b63f1a8891087b
|
3 |
+
size 1172237
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1352.4713506245753, "std_reward": 70.97705596239803, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T18:33:04.355110"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d713cef14bb9912b2f8928c4b6717e82f06a5582f6d202d6e77476734d7f1a7
|
3 |
+
size 2136
|