ljones commited on
Commit
47469bd
1 Parent(s): a15a82b

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1352.47 +/- 70.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eddc695387d7b236a6a8ec201c58bd3dcc87cc7c34b7531457cfbfbe919e621b
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa47be43940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa47be439d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa47be43a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa47be43af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa47be43b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa47be43c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa47be43ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa47be43d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa47be43dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa47be43e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa47be43ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa47be43f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa47be44e40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679678602212581412,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzh575+DMe/nICsv8dyvr+Snta+IkhuP+/Pbz5FVmI+S1agv2yshMD1vw+/XFj4vFLZ0D67xFfA/jRsvUYaEr6laMo9a+1Zv5epjT4jBSo+wXBoP4MZBsA/0Em/LCGXPuS5CMDbndw+EkcMPyjBJz+5owM/W6eDv9j2gcDO88a8GriwPoOSNL+iFJi/HKXTvvmvgL874E+/64xwvrNHjj8sXHo/gJRRvIuqID+uxTS/rryQv5O0sD9WriG/g49fvmvkMj8ls8C+CWhOv3CNk7xbqe8+253cPhJHDD9CVcO/JwzIP14qpbwtfRQ/AFjbP0w5KsCcP9A/2JCMvhNW+r608BW9nkqKQHPlkD9dCAu/Uw/gvz4Irz9WGpS+9FsJQCjioD2mdwnAnX2Tv7EEcr7n04K/ZIZnPKgz8T/3hJK+W6nvPtud3D4SRww/QlXDv7rmmD/Y1kI+aRcgP38m5D+/et2/VeY6Pnc7Fb/RUCu/IhlgPzLdSryuNXk9X4Ejv/6hS742Qhu/xw8oP1JEU78c4cS9Rj6fv8QCYr/sp+69boeLu8GeEz9kEK4/bKkRwFup7z7bndw+EkcMP0JVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAkHXy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUyP6PQAAAADRGOu/AAAAANLNBr4AAAAADBIBQAAAAABYjUI9AAAAAL+X8j8AAAAAdY/MvAAAAABbaOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATWAqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNRV7wAAAAAhg8AwAAAAAAhOrk8AAAAAHKf2z8AAAAA60rwvAAAAABtRfE/AAAAAHPB370AAAAAdh7xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKLzDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8iBu9AAAAAOip578AAAAAktgxvQAAAACnFN8/AAAAAPmcXL0AAAAAwoXaPwAAAADIfKK9AAAAAO1G5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJsYo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4o5PAAAAAAcdey/AAAAAH57Yr0AAAAArUDaPwAAAACsjDc8AAAAAKbU5D8AAAAAs2fTvQAAAABQKeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpGvDvVmSSMAWyUTegDjAF0lEdAwF33SApazXV9lChoBkdAnnvj4QBgeGgHTegDaAhHQMBey2RaHKx1fZQoaAZHQJ3GZmqYJE9oB03oA2gIR0DAX3dNahYedX2UKGgGR0CdgYE61b7kaAdN6ANoCEdAwF+dtALRbHV9lChoBkdAmmixD5TIemgHTegDaAhHQMBg5O+yquN1fZQoaAZHQJmszeMyaeBoB03oA2gIR0DAYgsENe+mdX2UKGgGR0CO7wkvboKVaAdN6ANoCEdAwGMcN0/4ZnV9lChoBkdAlMo4Pf8/EGgHTegDaAhHQMBjWRCQcPx1fZQoaAZHQJoY7T7VJ+VoB03oA2gIR0DAZM19v0iAdX2UKGgGR0CcejMFUyYYaAdN6ANoCEdAwGWlAqNIb3V9lChoBkdAm/hMmF8G92gHTegDaAhHQMBmVeBpYcN1fZQoaAZHQJ1DAAfdRBNoB03oA2gIR0DAZn0OiFj/dX2UKGgGR0CfRe4iX6ZZaAdN6ANoCEdAwGfFnWattHV9lChoBkdAnyDNqYZ2p2gHTegDaAhHQMBonVqesgd1fZQoaAZHQJ5qS2nbZe1oB03oA2gIR0DAaYiaRZEEdX2UKGgGR0CfBaoJRfnfaAdN6ANoCEdAwGnAKl54W3V9lChoBkdAny0kqMFUymgHTegDaAhHQMBroq2SdOJ1fZQoaAZHQJ0D6clPactoB03oA2gIR0DAbH9F6RhddX2UKGgGR0CbUdmlqJuVaAdN6ANoCEdAwG0rd9lVcXV9lChoBkdAnPmRgqmTDGgHTegDaAhHQMBtUUgSvkl1fZQoaAZHQJrS1lCkXUJoB03oA2gIR0DAbpyshgVodX2UKGgGR0CcxeUGFBY3aAdN6ANoCEdAwG9wW+GoJnV9lChoBkdAm4XoZMtbtGgHTegDaAhHQMBwHRjJ+2F1fZQoaAZHQJuYjxYq5LBoB03oA2gIR0DAcEG5Yoy9dX2UKGgGR0CZnXX3QD3eaAdN6ANoCEdAwHIVKNAC4nV9lChoBkdAmpN3c+JP7GgHTegDaAhHQMBzTgG8mKJ1fZQoaAZHQJwzATufEn9oB03oA2gIR0DAc/kkyDZldX2UKGgGR0CcymivxH5KaAdN6ANoCEdAwHQgOT7l73V9lChoBkdAmxaeZw4sE2gHTegDaAhHQMB1a/FrEcd1fZQoaAZHQJycav7m+0xoB03oA2gIR0DAdkFQ0oBrdX2UKGgGR0CeOPLhrFfiaAdN6ANoCEdAwHbqus90R3V9lChoBkdAnBoi3CsOomgHTegDaAhHQMB3EmmtQsR1fZQoaAZHQJ1YMy57PY5oB03oA2gIR0DAeIJtBOYZdX2UKGgGR0CcKMVawD/3aAdN6ANoCEdAwHnE0D2alXV9lChoBkdAmd546bONYWgHTegDaAhHQMB6xfmLcbl1fZQoaAZHQJb1thnanJloB03oA2gIR0DAeux+pfhNdX2UKGgGR0CZmjna37UHaAdN6ANoCEdAwHw0Q5myxHV9lChoBkdAm+8u5vtMPGgHTegDaAhHQMB9Dp6Y3Nt1fZQoaAZHQJzBzu0CzTpoB03oA2gIR0DAfbpxYJVsdX2UKGgGR0CYfEqrzXjEaAdN6ANoCEdAwH3f5zo2XXV9lChoBkdAnMVkf5k9U2gHTegDaAhHQMB/KVwxWT51fZQoaAZHQJwaNgrpaA5oB03oA2gIR0DAgCcsUZeidX2UKGgGR0Cao8th/iHZaAdN6ANoCEdAwIEoN+b3GnV9lChoBkdAm96PJNj9XWgHTegDaAhHQMCBY4MfA9F1fZQoaAZHQJe5v8HfMwFoB03oA2gIR0DAgwhujynUdX2UKGgGR0CUjrCtihFmaAdN6ANoCEdAwIPiWBSUDHV9lChoBkdAmxRs6q8142gHTegDaAhHQMCEji53C9B1fZQoaAZHQJkhMLb5/LFoB03oA2gIR0DAhLZzgdfcdX2UKGgGR0Ca7FzTnaFmaAdN6ANoCEdAwIX7R4QjEHV9lChoBkdAnPTUSAYpD2gHTegDaAhHQMCG1oKD0191fZQoaAZHQJwNl4NZvDRoB03oA2gIR0DAh59pItlJdX2UKGgGR0Cdq+GViWmhaAdN6ANoCEdAwIfXIQOFxnV9lChoBkdAnCBZprULD2gHTegDaAhHQMCJ0m51/2F1fZQoaAZHQJsiIExIre9oB03oA2gIR0DAirNzXBgvdX2UKGgGR0CcPBEcsDnvaAdN6ANoCEdAwItfQvYe1nV9lChoBkdAlLCwtrbg0mgHTegDaAhHQMCLhn5Jsft1fZQoaAZHQJ1eqNLlFMJoB03oA2gIR0DAjNL5dnkDdX2UKGgGR0CVEEQQcxTLaAdN6ANoCEdAwI2pn27FsHV9lChoBkdAlzKUcS5AhWgHTegDaAhHQMCOU4LCvX91fZQoaAZHQJcwQ1Q66rhoB03oA2gIR0DAjnoMvyskdX2UKGgGR0CYMKw8GLUDaAdN6ANoCEdAwJAhzdUKiXV9lChoBkdAmEbaOHWSU2gHTegDaAhHQMCRcLDIikh1fZQoaAZHQJpzyDUVi4JoB03oA2gIR0DAkjXe1rqMdX2UKGgGR0CU0KuLJjlQaAdN6ANoCEdAwJJcB+Wnj3V9lChoBkdAnEXJfdAPd2gHTegDaAhHQMCTpKTjebd1fZQoaAZHQJr1nSH/LkloB03oA2gIR0DAlH7C79Q5dX2UKGgGR0CabULsrupkaAdN6ANoCEdAwJUs1D0Dl3V9lChoBkdAmZMfM4cWCWgHTegDaAhHQMCVU1R+BpZ1fZQoaAZHQJP2hb1RLsdoB03oA2gIR0DAlqKFdszmdX2UKGgGR0CXdtM8ox5+aAdN6ANoCEdAwJfh9c8klnV9lChoBkdAjiyYIa99MWgHTegDaAhHQMCY9XT3IuJ1fZQoaAZHQJD5R1IRRMxoB03oA2gIR0DAmTVE9dNWdX2UKGgGR0CRriX18LKFaAdN6ANoCEdAwJqU7e2uxXV9lChoBkdAlW5Etuk1uWgHTegDaAhHQMCbgqIi1Rd1fZQoaAZHQJau+5e7cwhoB03oA2gIR0DAnEOSOinHdX2UKGgGR0CRtzNDc/MXaAdN6ANoCEdAwJxsMsH0LHV9lChoBkdAkkNhqj8DS2gHTegDaAhHQMCd0po0ygx1fZQoaAZHQJaGvfVI7NloB03oA2gIR0DAnuHrUsnRdX2UKGgGR0CSq3O8CgbqaAdN6ANoCEdAwJ/z0W/JvHV9lChoBkdAlaszSgGr0mgHTegDaAhHQMCgM0d7v5R1fZQoaAZHQJZuNikO7QNoB03oA2gIR0DAofV/vv0AdX2UKGgGR0CX0h3x4IKMaAdN6ANoCEdAwKLgFiay8nV9lChoBkdAmOG4wudwvWgHTegDaAhHQMCjlSbH6uZ1fZQoaAZHQJs2rjdYW+JoB03oA2gIR0DAo78c0cfedX2UKGgGR0CYHCX668QJaAdN6ANoCEdAwKUVbxmTT3V9lChoBkdAlsOyYkVvdmgHTegDaAhHQMCl9Q1ivxJ1fZQoaAZHQJiD7VhCtzVoB03oA2gIR0DApt0lAu7IdX2UKGgGR0CV2HJXQtz0aAdN6ANoCEdAwKcU/oq0+nV9lChoBkdAkc2dXcQAdWgHTegDaAhHQMCpBbeEZix1fZQoaAZHQJlmdRR/EwZoB03oA2gIR0DAqdxNsWO7dX2UKGgGR0CSAS+zt1IRaAdN6ANoCEdAwKqLb6guiHV9lChoBkdAk2DEZBLPEGgHTegDaAhHQMCqstaQmu11fZQoaAZHQJLJrWK/EfloB03oA2gIR0DAq/2TxG2DdX2UKGgGR0CFiy/D+BH1aAdN6ANoCEdAwKzejFAE+3V9lChoBkdAkZsI9xIatWgHTegDaAhHQMCtjLpiZv11fZQoaAZHQJRs9vjwQUZoB03oA2gIR0DArbUL2HtXdX2UKGgGR0CSgDuf29L6aAdN6ANoCEdAwK+RWkJrtXV9lChoBkdAk0ncOPNmlWgHTegDaAhHQMCwyjSgGr11fZQoaAZHQJUCn6l+EytoB03oA2gIR0DAsX6lchTwdX2UKGgGR0CSIr1CPZIyaAdN6ANoCEdAwLGl7l7tzHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34101875c4bf2a9ba44ff2212809716095a7911e5387bc2c32f61ed3d71209f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b16bea799be4b35f4d4d81fab3898ce3cd7f926c23152a6fde91f6fc20e6a0d0
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa47be43940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa47be439d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa47be43a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa47be43af0>", "_build": "<function ActorCriticPolicy._build at 0x7fa47be43b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fa47be43c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa47be43ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa47be43d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa47be43dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa47be43e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa47be43ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa47be43f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa47be44e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679678602212581412, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzh575+DMe/nICsv8dyvr+Snta+IkhuP+/Pbz5FVmI+S1agv2yshMD1vw+/XFj4vFLZ0D67xFfA/jRsvUYaEr6laMo9a+1Zv5epjT4jBSo+wXBoP4MZBsA/0Em/LCGXPuS5CMDbndw+EkcMPyjBJz+5owM/W6eDv9j2gcDO88a8GriwPoOSNL+iFJi/HKXTvvmvgL874E+/64xwvrNHjj8sXHo/gJRRvIuqID+uxTS/rryQv5O0sD9WriG/g49fvmvkMj8ls8C+CWhOv3CNk7xbqe8+253cPhJHDD9CVcO/JwzIP14qpbwtfRQ/AFjbP0w5KsCcP9A/2JCMvhNW+r608BW9nkqKQHPlkD9dCAu/Uw/gvz4Irz9WGpS+9FsJQCjioD2mdwnAnX2Tv7EEcr7n04K/ZIZnPKgz8T/3hJK+W6nvPtud3D4SRww/QlXDv7rmmD/Y1kI+aRcgP38m5D+/et2/VeY6Pnc7Fb/RUCu/IhlgPzLdSryuNXk9X4Ejv/6hS742Qhu/xw8oP1JEU78c4cS9Rj6fv8QCYr/sp+69boeLu8GeEz9kEK4/bKkRwFup7z7bndw+EkcMP0JVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAkHXy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUyP6PQAAAADRGOu/AAAAANLNBr4AAAAADBIBQAAAAABYjUI9AAAAAL+X8j8AAAAAdY/MvAAAAABbaOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATWAqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNRV7wAAAAAhg8AwAAAAAAhOrk8AAAAAHKf2z8AAAAA60rwvAAAAABtRfE/AAAAAHPB370AAAAAdh7xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKLzDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8iBu9AAAAAOip578AAAAAktgxvQAAAACnFN8/AAAAAPmcXL0AAAAAwoXaPwAAAADIfKK9AAAAAO1G5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJsYo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4o5PAAAAAAcdey/AAAAAH57Yr0AAAAArUDaPwAAAACsjDc8AAAAAKbU5D8AAAAAs2fTvQAAAABQKeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpGvDvVmSSMAWyUTegDjAF0lEdAwF33SApazXV9lChoBkdAnnvj4QBgeGgHTegDaAhHQMBey2RaHKx1fZQoaAZHQJ3GZmqYJE9oB03oA2gIR0DAX3dNahYedX2UKGgGR0CdgYE61b7kaAdN6ANoCEdAwF+dtALRbHV9lChoBkdAmmixD5TIemgHTegDaAhHQMBg5O+yquN1fZQoaAZHQJmszeMyaeBoB03oA2gIR0DAYgsENe+mdX2UKGgGR0CO7wkvboKVaAdN6ANoCEdAwGMcN0/4ZnV9lChoBkdAlMo4Pf8/EGgHTegDaAhHQMBjWRCQcPx1fZQoaAZHQJoY7T7VJ+VoB03oA2gIR0DAZM19v0iAdX2UKGgGR0CcejMFUyYYaAdN6ANoCEdAwGWlAqNIb3V9lChoBkdAm/hMmF8G92gHTegDaAhHQMBmVeBpYcN1fZQoaAZHQJ1DAAfdRBNoB03oA2gIR0DAZn0OiFj/dX2UKGgGR0CfRe4iX6ZZaAdN6ANoCEdAwGfFnWattHV9lChoBkdAnyDNqYZ2p2gHTegDaAhHQMBonVqesgd1fZQoaAZHQJ5qS2nbZe1oB03oA2gIR0DAaYiaRZEEdX2UKGgGR0CfBaoJRfnfaAdN6ANoCEdAwGnAKl54W3V9lChoBkdAny0kqMFUymgHTegDaAhHQMBroq2SdOJ1fZQoaAZHQJ0D6clPactoB03oA2gIR0DAbH9F6RhddX2UKGgGR0CbUdmlqJuVaAdN6ANoCEdAwG0rd9lVcXV9lChoBkdAnPmRgqmTDGgHTegDaAhHQMBtUUgSvkl1fZQoaAZHQJrS1lCkXUJoB03oA2gIR0DAbpyshgVodX2UKGgGR0CcxeUGFBY3aAdN6ANoCEdAwG9wW+GoJnV9lChoBkdAm4XoZMtbtGgHTegDaAhHQMBwHRjJ+2F1fZQoaAZHQJuYjxYq5LBoB03oA2gIR0DAcEG5Yoy9dX2UKGgGR0CZnXX3QD3eaAdN6ANoCEdAwHIVKNAC4nV9lChoBkdAmpN3c+JP7GgHTegDaAhHQMBzTgG8mKJ1fZQoaAZHQJwzATufEn9oB03oA2gIR0DAc/kkyDZldX2UKGgGR0CcymivxH5KaAdN6ANoCEdAwHQgOT7l73V9lChoBkdAmxaeZw4sE2gHTegDaAhHQMB1a/FrEcd1fZQoaAZHQJycav7m+0xoB03oA2gIR0DAdkFQ0oBrdX2UKGgGR0CeOPLhrFfiaAdN6ANoCEdAwHbqus90R3V9lChoBkdAnBoi3CsOomgHTegDaAhHQMB3EmmtQsR1fZQoaAZHQJ1YMy57PY5oB03oA2gIR0DAeIJtBOYZdX2UKGgGR0CcKMVawD/3aAdN6ANoCEdAwHnE0D2alXV9lChoBkdAmd546bONYWgHTegDaAhHQMB6xfmLcbl1fZQoaAZHQJb1thnanJloB03oA2gIR0DAeux+pfhNdX2UKGgGR0CZmjna37UHaAdN6ANoCEdAwHw0Q5myxHV9lChoBkdAm+8u5vtMPGgHTegDaAhHQMB9Dp6Y3Nt1fZQoaAZHQJzBzu0CzTpoB03oA2gIR0DAfbpxYJVsdX2UKGgGR0CYfEqrzXjEaAdN6ANoCEdAwH3f5zo2XXV9lChoBkdAnMVkf5k9U2gHTegDaAhHQMB/KVwxWT51fZQoaAZHQJwaNgrpaA5oB03oA2gIR0DAgCcsUZeidX2UKGgGR0Cao8th/iHZaAdN6ANoCEdAwIEoN+b3GnV9lChoBkdAm96PJNj9XWgHTegDaAhHQMCBY4MfA9F1fZQoaAZHQJe5v8HfMwFoB03oA2gIR0DAgwhujynUdX2UKGgGR0CUjrCtihFmaAdN6ANoCEdAwIPiWBSUDHV9lChoBkdAmxRs6q8142gHTegDaAhHQMCEji53C9B1fZQoaAZHQJkhMLb5/LFoB03oA2gIR0DAhLZzgdfcdX2UKGgGR0Ca7FzTnaFmaAdN6ANoCEdAwIX7R4QjEHV9lChoBkdAnPTUSAYpD2gHTegDaAhHQMCG1oKD0191fZQoaAZHQJwNl4NZvDRoB03oA2gIR0DAh59pItlJdX2UKGgGR0Cdq+GViWmhaAdN6ANoCEdAwIfXIQOFxnV9lChoBkdAnCBZprULD2gHTegDaAhHQMCJ0m51/2F1fZQoaAZHQJsiIExIre9oB03oA2gIR0DAirNzXBgvdX2UKGgGR0CcPBEcsDnvaAdN6ANoCEdAwItfQvYe1nV9lChoBkdAlLCwtrbg0mgHTegDaAhHQMCLhn5Jsft1fZQoaAZHQJ1eqNLlFMJoB03oA2gIR0DAjNL5dnkDdX2UKGgGR0CVEEQQcxTLaAdN6ANoCEdAwI2pn27FsHV9lChoBkdAlzKUcS5AhWgHTegDaAhHQMCOU4LCvX91fZQoaAZHQJcwQ1Q66rhoB03oA2gIR0DAjnoMvyskdX2UKGgGR0CYMKw8GLUDaAdN6ANoCEdAwJAhzdUKiXV9lChoBkdAmEbaOHWSU2gHTegDaAhHQMCRcLDIikh1fZQoaAZHQJpzyDUVi4JoB03oA2gIR0DAkjXe1rqMdX2UKGgGR0CU0KuLJjlQaAdN6ANoCEdAwJJcB+Wnj3V9lChoBkdAnEXJfdAPd2gHTegDaAhHQMCTpKTjebd1fZQoaAZHQJr1nSH/LkloB03oA2gIR0DAlH7C79Q5dX2UKGgGR0CabULsrupkaAdN6ANoCEdAwJUs1D0Dl3V9lChoBkdAmZMfM4cWCWgHTegDaAhHQMCVU1R+BpZ1fZQoaAZHQJP2hb1RLsdoB03oA2gIR0DAlqKFdszmdX2UKGgGR0CXdtM8ox5+aAdN6ANoCEdAwJfh9c8klnV9lChoBkdAjiyYIa99MWgHTegDaAhHQMCY9XT3IuJ1fZQoaAZHQJD5R1IRRMxoB03oA2gIR0DAmTVE9dNWdX2UKGgGR0CRriX18LKFaAdN6ANoCEdAwJqU7e2uxXV9lChoBkdAlW5Etuk1uWgHTegDaAhHQMCbgqIi1Rd1fZQoaAZHQJau+5e7cwhoB03oA2gIR0DAnEOSOinHdX2UKGgGR0CRtzNDc/MXaAdN6ANoCEdAwJxsMsH0LHV9lChoBkdAkkNhqj8DS2gHTegDaAhHQMCd0po0ygx1fZQoaAZHQJaGvfVI7NloB03oA2gIR0DAnuHrUsnRdX2UKGgGR0CSq3O8CgbqaAdN6ANoCEdAwJ/z0W/JvHV9lChoBkdAlaszSgGr0mgHTegDaAhHQMCgM0d7v5R1fZQoaAZHQJZuNikO7QNoB03oA2gIR0DAofV/vv0AdX2UKGgGR0CX0h3x4IKMaAdN6ANoCEdAwKLgFiay8nV9lChoBkdAmOG4wudwvWgHTegDaAhHQMCjlSbH6uZ1fZQoaAZHQJs2rjdYW+JoB03oA2gIR0DAo78c0cfedX2UKGgGR0CYHCX668QJaAdN6ANoCEdAwKUVbxmTT3V9lChoBkdAlsOyYkVvdmgHTegDaAhHQMCl9Q1ivxJ1fZQoaAZHQJiD7VhCtzVoB03oA2gIR0DApt0lAu7IdX2UKGgGR0CV2HJXQtz0aAdN6ANoCEdAwKcU/oq0+nV9lChoBkdAkc2dXcQAdWgHTegDaAhHQMCpBbeEZix1fZQoaAZHQJlmdRR/EwZoB03oA2gIR0DAqdxNsWO7dX2UKGgGR0CSAS+zt1IRaAdN6ANoCEdAwKqLb6guiHV9lChoBkdAk2DEZBLPEGgHTegDaAhHQMCqstaQmu11fZQoaAZHQJLJrWK/EfloB03oA2gIR0DAq/2TxG2DdX2UKGgGR0CFiy/D+BH1aAdN6ANoCEdAwKzejFAE+3V9lChoBkdAkZsI9xIatWgHTegDaAhHQMCtjLpiZv11fZQoaAZHQJRs9vjwQUZoB03oA2gIR0DArbUL2HtXdX2UKGgGR0CSgDuf29L6aAdN6ANoCEdAwK+RWkJrtXV9lChoBkdAk0ncOPNmlWgHTegDaAhHQMCwyjSgGr11fZQoaAZHQJUCn6l+EytoB03oA2gIR0DAsX6lchTwdX2UKGgGR0CSIr1CPZIyaAdN6ANoCEdAwLGl7l7tzHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd66159a4c33f5eaa6c47f7c819791981ca580e2a5522eda6b63f1a8891087b
3
+ size 1172237
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1352.4713506245753, "std_reward": 70.97705596239803, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T18:33:04.355110"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d713cef14bb9912b2f8928c4b6717e82f06a5582f6d202d6e77476734d7f1a7
3
+ size 2136