--- library_name: peft tags: - alignment-handbook - generated_from_trainer datasets: - llama-duo/synth_summarize_dataset_dedup base_model: google/gemma-7b model-index: - name: gemma7b-summarize-gpt4o-128k results: [] --- # gemma7b-summarize-gpt4o-128k This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.4869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1594 | 0.9977 | 219 | 2.6195 | | 1.0276 | 2.0 | 439 | 2.4670 | | 0.9492 | 2.9977 | 658 | 2.4451 | | 0.8751 | 4.0 | 878 | 2.4359 | | 0.8477 | 4.9977 | 1097 | 2.4390 | | 0.809 | 6.0 | 1317 | 2.4546 | | 0.7918 | 6.9977 | 1536 | 2.4592 | | 0.7847 | 8.0 | 1756 | 2.4783 | | 0.7808 | 8.9977 | 1975 | 2.4889 | | 0.7794 | 9.9772 | 2190 | 2.4869 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1