--- base_model: meta-llama/Meta-Llama-3-8B datasets: - llama-duo/synth_classification_dataset_dedup library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3-8b-classification-gpt4o-100k2 results: [] --- # llama3-8b-classification-gpt4o-100k2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_classification_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 1.8048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4428 | 0.9978 | 225 | 1.7488 | | 1.3593 | 2.0 | 451 | 1.7692 | | 1.3157 | 2.9978 | 676 | 1.7700 | | 1.2688 | 4.0 | 902 | 1.7925 | | 1.2699 | 4.9889 | 1125 | 1.8048 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1