--- base_model: meta-llama/Meta-Llama-3.1-8B datasets: - llama-duo/synth_closed_qa_dataset_dedup library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3.1-8b-closedqa-gpt4o-100k results: [] --- # llama3.1-8b-closedqa-gpt4o-100k This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the llama-duo/synth_closed_qa_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 3.8424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9422 | 0.9991 | 582 | 1.9762 | | 0.8939 | 2.0 | 1165 | 2.0232 | | 0.8255 | 2.9991 | 1747 | 2.1086 | | 0.7584 | 4.0 | 2330 | 2.2541 | | 0.6928 | 4.9991 | 2912 | 2.4424 | | 0.6102 | 6.0 | 3495 | 2.7089 | | 0.5466 | 6.9991 | 4077 | 3.0554 | | 0.5038 | 8.0 | 4660 | 3.4053 | | 0.4624 | 8.9991 | 5242 | 3.6952 | | 0.454 | 9.9914 | 5820 | 3.8424 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1