File size: 2,215 Bytes
73a587f
3a970eb
 
73a587f
 
 
 
 
 
5e3037e
73a587f
 
a8e5130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73a587f
 
 
3a970eb
73a587f
 
 
 
 
3a970eb
73a587f
 
3a970eb
73a587f
 
 
 
 
 
 
 
 
3a970eb
 
73a587f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0  
inference: false  
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

**dragon-qwen-7b-gguf** is a quantized version of a fact-based question answering model, optimized for complex business documents, fine-tuned on top of Qwen2 7B base, and then packaged with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.  


### Benchmark Tests  

Evaluated against the benchmark test:   [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)  
1 Test Run with sample=False & temperature=0.0 (deterministic output) - 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.  

--**Accuracy Score**:  **99.0** correct out of 100  
--Not Found Classification:  85.0%  
--Boolean:  100.0%  
--Math/Logic:  92.5%  
--Complex Questions (1-5):  5 (Best in Class)  
--Summarization Quality (1-5):  3 (Average)  
--Hallucinations:  No hallucinations observed in test runs.  

For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).


To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/dragon-qwen-7b-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    model = ModelCatalog().load_model("dragon-qwen-7b-gguf")            
    response = model.inference(query, add_context=text_sample)  

Note: please review [**config.json**](https://huggingface.co/llmware/dragon-qwen-7b-gguf/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** llmware
- **Model type:** GGUF 
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Quantized from model:** llmware/dragon-qwen
  

## Model Card Contact

Darren Oberst & llmware team