--- license: apache-2.0 inference: false --- # SLIM-Q-GEN-PHI-3 **slim-q-gen-phi-3** implements a specialized function-calling question generation from a context passage, with output in the form of a python dictionary, e.g.,     `{'question': ['What were earnings per share in the most recent quarter?'] } This model is finetuned on top of phi-3-mini-4k-instruct base. For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-q-gen-phi-3-tool'**](https://huggingface.co/llmware/slim-q-gen-phi-3-tool). ## Prompt format: `function = "generate"` `params = "{'question', 'boolean', or 'multiple choice'}"` `prompt = " " + {text} + "\n" + `                       `"<{function}> " + {params} + "" + "\n:"`
Transformers Script model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-phi-3") tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-phi-3") function = "generate" params = "boolean" text = "Tesla stock declined yesterday 8% in premarket trading after a poorly-received event in San Francisco yesterday, in which the company indicated a likely shortfall in revenue." prompt = ": " + text + "\n" + f"<{function}> {params} \n:" inputs = tokenizer(prompt, return_tensors="pt") start_of_input = len(inputs.input_ids[0]) outputs = model.generate( inputs.input_ids.to('cpu'), eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.7, max_new_tokens=200 ) output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) print("output only: ", output_only) [OUTPUT]: {'llm_response': {'question': ['Did Telsa stock decline more than 8% yesterday?']} } # here's the fun part try: output_only = ast.literal_eval(llm_string_output) print("success - converted to python dictionary automatically") except: print("fail - could not convert to python dictionary automatically - ", llm_string_output)
Using as Function Call in LLMWare from llmware.models import ModelCatalog slim_model = ModelCatalog().load_model("llmware/slim-q-gen-phi-3", sample=True, temperature=0.7) response = slim_model.function_call(text,params=["boolean"], function="generate") print("llmware - llm_response: ", response)
## Model Card Contact Darren Oberst & llmware team [Join us on Discord](https://discord.gg/MhZn5Nc39h)