|
--- |
|
license: apache-2.0 |
|
inference: false |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
**slim-ratings** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling. |
|
|
|
slim-ratings has been fine-tuned for **rating/stars** (sentiment degree) function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.: |
|
|
|
`{"rating": ["{rating score of 1(low) - 5(high)"]}` |
|
|
|
|
|
SLIM models are designed to provide a flexible natural language generative model that can be used as part of a multi-step, multi-model LLM-based automation workflow. |
|
|
|
Each slim model has a 'quantized tool' version, e.g., [**'slim-ratings-tool'**](https://huggingface.co/llmware/slim-ratings-tool). |
|
|
|
|
|
## Prompt format: |
|
|
|
`function = "classify"` |
|
`params = "rating"` |
|
`prompt = "<human> " + {text} + "\n" + ` |
|
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` |
|
|
|
|
|
<details> |
|
<summary>Transformers Script </summary> |
|
|
|
model = AutoModelForCausalLM.from_pretrained("llmware/slim-ratings") |
|
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-ratings") |
|
|
|
function = "classify" |
|
params = "rating" |
|
|
|
text = "I am extremely impressed with the quality of earnings and growth that we have seen from the company this quarter." |
|
|
|
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
start_of_input = len(inputs.input_ids[0]) |
|
|
|
outputs = model.generate( |
|
inputs.input_ids.to('cpu'), |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
temperature=0.3, |
|
max_new_tokens=100 |
|
) |
|
|
|
output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) |
|
|
|
print("output only: ", output_only) |
|
|
|
# here's the fun part |
|
try: |
|
output_only = ast.literal_eval(llm_string_output) |
|
print("success - converted to python dictionary automatically") |
|
except: |
|
print("fail - could not convert to python dictionary automatically - ", llm_string_output) |
|
|
|
</details> |
|
|
|
<details> |
|
|
|
|
|
|
|
|
|
<summary>Using as Function Call in LLMWare</summary> |
|
|
|
from llmware.models import ModelCatalog |
|
slim_model = ModelCatalog().load_model("llmware/slim-ratings") |
|
response = slim_model.function_call(text,params=["rating"], function="classify") |
|
|
|
print("llmware - llm_response: ", response) |
|
|
|
</details> |
|
|
|
|
|
## Model Card Contact |
|
|
|
Darren Oberst & llmware team |
|
|
|
[Join us on Discord](https://discord.gg/MhZn5Nc39h) |
|
|
|
|
|
|