File size: 6,742 Bytes
31c2ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
 
 
bd49219
 
31c2ed8
bd49219
 
31c2ed8
bd49219
 
31c2ed8
bd49219
 
31c2ed8
bd49219
 
31c2ed8
 
bd49219
31c2ed8
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348a0f1
31c2ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_tweetqa
pipeline_tag: text2text-generation
tags:
- question answering
widget:
- text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things."
  example_title: "Question Answering Example 1" 
- text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014"
  example_title: "Question Answering Example 2" 
model-index:
- name: lmqg/bart-base-tweetqa-qa
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_tweetqa
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Answering)
      type: bleu4_question_answering
      value: 33.57
    - name: ROUGE-L (Question Answering)
      type: rouge_l_question_answering
      value: 58.37
    - name: METEOR (Question Answering)
      type: meteor_question_answering
      value: 32.39
    - name: BERTScore (Question Answering)
      type: bertscore_question_answering
      value: 93.84
    - name: MoverScore (Question Answering)
      type: moverscore_question_answering
      value: 78.67
    - name: AnswerF1Score (Question Answering)
      type: answer_f1_score__question_answering
      value: 64.79
    - name: AnswerExactMatch (Question Answering)
      type: answer_exact_match_question_answering
      value: 48.38
---

# Model Card of `lmqg/bart-base-tweetqa-qa`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question answering task on the [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)   
- **Language:** en  
- **Training data:** [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/bart-base-tweetqa-qa")

# model prediction
answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/bart-base-tweetqa-qa")
output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")

```

## Evaluation


- ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/bart-base-tweetqa-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_tweetqa.default.json) 

|                  |   Score | Type    | Dataset                                                            |
|:-----------------|--------:|:--------|:-------------------------------------------------------------------|
| AnswerExactMatch |   48.38 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| AnswerF1Score    |   64.79 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| BERTScore        |   93.84 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_1           |   54.68 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_2           |   46.42 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_3           |   38.97 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_4           |   33.57 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| METEOR           |   32.39 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| MoverScore       |   78.67 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| ROUGE_L          |   58.37 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_tweetqa
 - dataset_name: default
 - input_types: ['paragraph_question']
 - output_types: ['answer']
 - prefix_types: None
 - model: facebook/bart-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 3
 - batch: 32
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 2
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-tweetqa-qa/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```