File size: 6,742 Bytes
31c2ed8 348a0f1 31c2ed8 bd49219 31c2ed8 bd49219 31c2ed8 bd49219 31c2ed8 bd49219 31c2ed8 bd49219 31c2ed8 bd49219 31c2ed8 348a0f1 31c2ed8 348a0f1 31c2ed8 348a0f1 31c2ed8 348a0f1 31c2ed8 348a0f1 31c2ed8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_tweetqa
pipeline_tag: text2text-generation
tags:
- question answering
widget:
- text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things."
example_title: "Question Answering Example 1"
- text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014"
example_title: "Question Answering Example 2"
model-index:
- name: lmqg/bart-base-tweetqa-qa
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_tweetqa
type: default
args: default
metrics:
- name: BLEU4 (Question Answering)
type: bleu4_question_answering
value: 33.57
- name: ROUGE-L (Question Answering)
type: rouge_l_question_answering
value: 58.37
- name: METEOR (Question Answering)
type: meteor_question_answering
value: 32.39
- name: BERTScore (Question Answering)
type: bertscore_question_answering
value: 93.84
- name: MoverScore (Question Answering)
type: moverscore_question_answering
value: 78.67
- name: AnswerF1Score (Question Answering)
type: answer_f1_score__question_answering
value: 64.79
- name: AnswerExactMatch (Question Answering)
type: answer_exact_match_question_answering
value: 48.38
---
# Model Card of `lmqg/bart-base-tweetqa-qa`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question answering task on the [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)
- **Language:** en
- **Training data:** [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-base-tweetqa-qa")
# model prediction
answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-base-tweetqa-qa")
output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
## Evaluation
- ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/bart-base-tweetqa-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_tweetqa.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-------------------------------------------------------------------|
| AnswerExactMatch | 48.38 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| AnswerF1Score | 64.79 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| BERTScore | 93.84 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_1 | 54.68 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_2 | 46.42 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_3 | 38.97 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_4 | 33.57 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| METEOR | 32.39 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| MoverScore | 78.67 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| ROUGE_L | 58.37 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_tweetqa
- dataset_name: default
- input_types: ['paragraph_question']
- output_types: ['answer']
- prefix_types: None
- model: facebook/bart-base
- max_length: 512
- max_length_output: 32
- epoch: 3
- batch: 32
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-tweetqa-qa/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|