File size: 5,365 Bytes
0e76951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qag_itquad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/mt5-base-itquad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_itquad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 79.93
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 78.87
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 81.06
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 53.8
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 53.02
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 54.64
---
# Model Card of `lmqg/mt5-base-itquad-qag`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question & answer pair generation task on the [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** it
- **Training data:** [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-base-itquad-qag")
# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-itquad-qag")
output = pipe("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_itquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 79.93 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
| QAAlignedF1Score (MoverScore) | 53.8 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
| QAAlignedPrecision (BERTScore) | 81.06 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
| QAAlignedPrecision (MoverScore) | 54.64 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
| QAAlignedRecall (BERTScore) | 78.87 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
| QAAlignedRecall (MoverScore) | 53.02 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_itquad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 256
- epoch: 4
- batch: 2
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 32
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-itquad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|