File size: 6,720 Bytes
a9d0d95
 
 
 
 
 
 
 
 
8f5a377
a9d0d95
 
 
 
 
 
f4ac374
a9d0d95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5a377
a9d0d95
 
8f5a377
a9d0d95
 
 
 
 
 
 
 
8f5a377
a9d0d95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- answer extraction
widget:
- text: "南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
  example_title: "Answering Extraction Example 1" 
model-index:
- name: lmqg/mt5-small-zhquad-ae
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_zhquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Answer Extraction)
      type: bleu4_answer_extraction
      value: 82.12
    - name: ROUGE-L (Answer Extraction)
      type: rouge_l_answer_extraction
      value: 95.7
    - name: METEOR (Answer Extraction)
      type: meteor_answer_extraction
      value: 70.98
    - name: BERTScore (Answer Extraction)
      type: bertscore_answer_extraction
      value: 99.78
    - name: MoverScore (Answer Extraction)
      type: moverscore_answer_extraction
      value: 98.8
    - name: AnswerF1Score (Answer Extraction)
      type: answer_f1_score__answer_extraction
      value: 95.17
    - name: AnswerExactMatch (Answer Extraction)
      type: answer_exact_match_answer_extraction
      value: 95.08
---

# Model Card of `lmqg/mt5-small-zhquad-ae`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** en  
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-small-zhquad-ae")

# model prediction
answers = model.generate_a("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-ae")
output = pipe('南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。')

```

## Evaluation


- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json) 

|                  |   Score | Type    | Dataset                                                          |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch |   95.08 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| AnswerF1Score    |   95.17 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| BERTScore        |   99.78 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_1           |   92.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_2           |   88.98 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_3           |   85.68 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_4           |   82.12 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| METEOR           |   70.98 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| MoverScore       |   98.8  | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| ROUGE_L          |   95.7  | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_zhquad
 - dataset_name: default
 - input_types: ['paragraph_sentence']
 - output_types: ['answer']
 - prefix_types: None
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 4
 - batch: 16
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-zhquad-ae/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```