commit files to HF hub
Browse files- README.md +135 -0
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_zhquad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt +0 -0
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: zh
|
11 |
+
datasets:
|
12 |
+
- lmqg/qag_zhquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- questions and answers generation
|
16 |
+
widget:
|
17 |
+
- text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
|
18 |
+
example_title: "Questions & Answers Generation Example 1"
|
19 |
+
model-index:
|
20 |
+
- name: lmqg/mt5-small-zhquad-qag
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
name: Text2text Generation
|
24 |
+
type: text2text-generation
|
25 |
+
dataset:
|
26 |
+
name: lmqg/qag_zhquad
|
27 |
+
type: default
|
28 |
+
args: default
|
29 |
+
metrics:
|
30 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
|
31 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation
|
32 |
+
value: 75.47
|
33 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
|
34 |
+
type: qa_aligned_recall_bertscore_question_answer_generation
|
35 |
+
value: 75.41
|
36 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
|
37 |
+
type: qa_aligned_precision_bertscore_question_answer_generation
|
38 |
+
value: 75.56
|
39 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
|
40 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation
|
41 |
+
value: 52.42
|
42 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
|
43 |
+
type: qa_aligned_recall_moverscore_question_answer_generation
|
44 |
+
value: 52.33
|
45 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
46 |
+
type: qa_aligned_precision_moverscore_question_answer_generation
|
47 |
+
value: 52.53
|
48 |
+
---
|
49 |
+
|
50 |
+
# Model Card of `lmqg/mt5-small-zhquad-qag`
|
51 |
+
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question & answer pair generation task on the [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
52 |
+
|
53 |
+
|
54 |
+
### Overview
|
55 |
+
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
|
56 |
+
- **Language:** zh
|
57 |
+
- **Training data:** [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) (default)
|
58 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
59 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
60 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
61 |
+
|
62 |
+
### Usage
|
63 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
64 |
+
```python
|
65 |
+
from lmqg import TransformersQG
|
66 |
+
|
67 |
+
# initialize model
|
68 |
+
model = TransformersQG(language="zh", model="lmqg/mt5-small-zhquad-qag")
|
69 |
+
|
70 |
+
# model prediction
|
71 |
+
question_answer_pairs = model.generate_qa("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
|
72 |
+
|
73 |
+
```
|
74 |
+
|
75 |
+
- With `transformers`
|
76 |
+
```python
|
77 |
+
from transformers import pipeline
|
78 |
+
|
79 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-qag")
|
80 |
+
output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
|
81 |
+
|
82 |
+
```
|
83 |
+
|
84 |
+
## Evaluation
|
85 |
+
|
86 |
+
|
87 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-zhquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_zhquad.default.json)
|
88 |
+
|
89 |
+
| | Score | Type | Dataset |
|
90 |
+
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
|
91 |
+
| QAAlignedF1Score (BERTScore) | 75.47 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
92 |
+
| QAAlignedF1Score (MoverScore) | 52.42 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
93 |
+
| QAAlignedPrecision (BERTScore) | 75.56 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
94 |
+
| QAAlignedPrecision (MoverScore) | 52.53 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
95 |
+
| QAAlignedRecall (BERTScore) | 75.41 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
96 |
+
| QAAlignedRecall (MoverScore) | 52.33 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
## Training hyperparameters
|
101 |
+
|
102 |
+
The following hyperparameters were used during fine-tuning:
|
103 |
+
- dataset_path: lmqg/qag_zhquad
|
104 |
+
- dataset_name: default
|
105 |
+
- input_types: ['paragraph']
|
106 |
+
- output_types: ['questions_answers']
|
107 |
+
- prefix_types: None
|
108 |
+
- model: google/mt5-small
|
109 |
+
- max_length: 512
|
110 |
+
- max_length_output: 256
|
111 |
+
- epoch: 12
|
112 |
+
- batch: 8
|
113 |
+
- lr: 0.001
|
114 |
+
- fp16: False
|
115 |
+
- random_seed: 1
|
116 |
+
- gradient_accumulation_steps: 8
|
117 |
+
- label_smoothing: 0.15
|
118 |
+
|
119 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-zhquad-qag/raw/main/trainer_config.json).
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
```
|
123 |
+
@inproceedings{ushio-etal-2022-generative,
|
124 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
125 |
+
author = "Ushio, Asahi and
|
126 |
+
Alva-Manchego, Fernando and
|
127 |
+
Camacho-Collados, Jose",
|
128 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
129 |
+
month = dec,
|
130 |
+
year = "2022",
|
131 |
+
address = "Abu Dhabi, U.A.E.",
|
132 |
+
publisher = "Association for Computational Linguistics",
|
133 |
+
}
|
134 |
+
|
135 |
+
```
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_zhquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.14134835343020602, "Bleu_2": 0.10534816521967788, "Bleu_3": 0.0766084173202246, "Bleu_4": 0.04687224075080508, "METEOR": 0.14697248412164318, "ROUGE_L": 0.21885139820728308, "BERTScore": 0.6995925002748316, "MoverScore": 0.5008344918609549, "QAAlignedF1Score (BERTScore)": 0.7592320980145917, "QAAlignedRecall (BERTScore)": 0.7419003721531561, "QAAlignedPrecision (BERTScore)": 0.7784040149783445, "QAAlignedF1Score (MoverScore)": 0.5269689064434208, "QAAlignedRecall (MoverScore)": 0.5157330420279342, "QAAlignedPrecision (MoverScore)": 0.5393656213706578}, "test": {"Bleu_1": 0.05186334464606799, "Bleu_2": 0.03793786971902631, "Bleu_3": 0.026232797866259774, "Bleu_4": 0.01568589004862248, "METEOR": 0.09359306444063609, "ROUGE_L": 0.10737244587096752, "BERTScore": 0.6015494508939344, "MoverScore": 0.4916226730806146, "QAAlignedF1Score (BERTScore)": 0.7547118486424483, "QAAlignedRecall (BERTScore)": 0.7540613106188125, "QAAlignedPrecision (BERTScore)": 0.7556347203918363, "QAAlignedF1Score (MoverScore)": 0.5242262076682067, "QAAlignedRecall (MoverScore)": 0.5232569024808614, "QAAlignedPrecision (MoverScore)": 0.5253399484071091}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qag_zhquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": null, "model": "google/mt5-small", "max_length": 512, "max_length_output": 256, "epoch": 12, "batch": 8, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 8, "label_smoothing": 0.15}
|