lodestones
commited on
Commit
•
56f6f5e
1
Parent(s):
d1a3731
Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ license_link: https://ai.google.dev/gemma/terms
|
|
13 |
|
14 |
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
|
15 |
|
16 |
-
This model card corresponds to the
|
17 |
|
18 |
**Resources and Technical Documentation**:
|
19 |
|
@@ -59,8 +59,8 @@ You can find fine-tuning notebooks under the [`examples/` directory](https://hug
|
|
59 |
```python
|
60 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
61 |
|
62 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
63 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
64 |
|
65 |
input_text = "Write me a poem about Machine Learning."
|
66 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
@@ -69,6 +69,23 @@ outputs = model.generate(**input_ids)
|
|
69 |
print(tokenizer.decode(outputs[0]))
|
70 |
```
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
#### Running the model on a single / multi GPU
|
74 |
|
@@ -77,8 +94,8 @@ print(tokenizer.decode(outputs[0]))
|
|
77 |
# pip install accelerate
|
78 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
79 |
|
80 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
81 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
82 |
|
83 |
input_text = "Write me a poem about Machine Learning."
|
84 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -96,8 +113,8 @@ print(tokenizer.decode(outputs[0]))
|
|
96 |
# pip install accelerate
|
97 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
98 |
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
100 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
101 |
|
102 |
input_text = "Write me a poem about Machine Learning."
|
103 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -112,8 +129,8 @@ print(tokenizer.decode(outputs[0]))
|
|
112 |
# pip install accelerate
|
113 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
114 |
|
115 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
116 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
117 |
|
118 |
input_text = "Write me a poem about Machine Learning."
|
119 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -132,8 +149,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
132 |
|
133 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
134 |
|
135 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
136 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
137 |
|
138 |
input_text = "Write me a poem about Machine Learning."
|
139 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -150,8 +167,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
150 |
|
151 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
152 |
|
153 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-
|
154 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-
|
155 |
|
156 |
input_text = "Write me a poem about Machine Learning."
|
157 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
13 |
|
14 |
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
|
15 |
|
16 |
+
This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the [7B base model](https://huggingface.co/google/gemma-7b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it).
|
17 |
|
18 |
**Resources and Technical Documentation**:
|
19 |
|
|
|
59 |
```python
|
60 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
61 |
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
63 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
64 |
|
65 |
input_text = "Write me a poem about Machine Learning."
|
66 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
|
|
69 |
print(tokenizer.decode(outputs[0]))
|
70 |
```
|
71 |
|
72 |
+
#### Running the model using Flax on a single GPU / TPU
|
73 |
+
|
74 |
+
|
75 |
+
```python
|
76 |
+
from transformers import AutoTokenizer, FlaxGemmaForCausalLM
|
77 |
+
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
79 |
+
model = FlaxGemmaForCausalLM.from_pretrained("google/gemma-2b-flax")
|
80 |
+
model.params = jax.tree_map(lambda x: jax.device_put(x, jax.devices()[0]).astype(jnp.float16), flax.params)
|
81 |
+
|
82 |
+
input_text = "Write me a poem about Machine Learning."
|
83 |
+
input_ids = jax.device_put(tokenizer(input_text, return_tensors="jax"), jax.devices()[0])
|
84 |
+
|
85 |
+
outputs = model.generate(**input_ids)
|
86 |
+
print(tokenizer.decode(outputs[0][0]))
|
87 |
+
```
|
88 |
+
|
89 |
|
90 |
#### Running the model on a single / multi GPU
|
91 |
|
|
|
94 |
# pip install accelerate
|
95 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
96 |
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
98 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
|
99 |
|
100 |
input_text = "Write me a poem about Machine Learning."
|
101 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
113 |
# pip install accelerate
|
114 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
115 |
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
117 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16)
|
118 |
|
119 |
input_text = "Write me a poem about Machine Learning."
|
120 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
129 |
# pip install accelerate
|
130 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
131 |
|
132 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
133 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16)
|
134 |
|
135 |
input_text = "Write me a poem about Machine Learning."
|
136 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
149 |
|
150 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
151 |
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
153 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
|
154 |
|
155 |
input_text = "Write me a poem about Machine Learning."
|
156 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
167 |
|
168 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
169 |
|
170 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
171 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
|
172 |
|
173 |
input_text = "Write me a poem about Machine Learning."
|
174 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|