First Model
Browse files- README.md +37 -0
- config.json +1 -0
- model1000000.zip +3 -0
- model1000000/_stable_baselines3_version +1 -0
- model1000000/data +94 -0
- model1000000/policy.optimizer.pth +3 -0
- model1000000/policy.pth +3 -0
- model1000000/pytorch_variables.pth +3 -0
- model1000000/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.58 +/- 12.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b69d9d9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b69d9da60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b69d9daf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b69d9db80>", "_build": "<function ActorCriticPolicy._build at 0x7f3b69d9dc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b69d9dca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b69d9dd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b69d9ddc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b69d9de50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b69d9dee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b69d9df70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b69d9f030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670532799061173181, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE10Kj7E350+xi4FvvKvYL41ydE7YZA9vQAAAAAAAAAAzSbSPFKwwLkQSAo4gt9PM8tzGLprrSG3AACAPwAAgD8z1l4+lC/KvBAqk7r7cAs5zpgvvqHSwDkAAIA/AACAP5opCz3DGXm6xQ9VuoQtVTb29r06yxx4OQAAgD8AAIA/LZC6PtMcNT/NZCO97mRividpoD3Q27u9AAAAAAAAAACz21o99ggcuurA67qEhwG1w7jxuv5DCToAAIA/AACAP801gj2Fk8m5nuvMOXBKCjbXA5m7+JX0uAAAgD8AAAAAGtkXvoMvE7wxiyM7GyEQOYQJgz2yNVa6AACAPwAAgD+mTrA9SMezurZ0IDnmcRg0Pc/6uH97N7gAAIA/AACAPzNz0jlWH1A9gva0vQnggb7/ejW9pV63PAAAAAAAAAAAmhFzvdfzZrkz5sM7RvFDNf9oezqRyjs0AACAPwAAgD+zhKa9j7Y1uqIosTvMIQg2M2jkOqdEBTUAAAAAAACAP7OCWL3hoIC6c0V5ObPbPjQL6DE5tOOQuAAAgD8AAIA/QGoLPnvroDsuEZK7MnULulMuQj1w2f26AACAPwAAgD/mAQm9yJOsvEUC+L1iGfa9kbUGPqaoBz8AAIA/AACAPwCn+DwpAGK6+qdvuhVHNzazrys6HTqLOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg4b+CS59ZkCUhpRSlIwBbJRN6AOMAXSUR0CWDkcp9ZzQdX2UKGgGaAloD0MIXyhgOxgSY0CUhpRSlGgVTegDaBZHQJYP3Wwu/UR1fZQoaAZoCWgPQwi3Y+qu7CJDQJSGlFKUaBVL+WgWR0CWEDImw7kodX2UKGgGaAloD0MIj1a1pKOxZ0CUhpRSlGgVTegDaBZHQJYT1At4A0d1fZQoaAZoCWgPQwiXAtL+B5VlQJSGlFKUaBVN6ANoFkdAlhjCNbTts3V9lChoBmgJaA9DCPfkYaHWIWRAlIaUUpRoFU3oA2gWR0CWGsiQDFIedX2UKGgGaAloD0MIoMTnTrBgYUCUhpRSlGgVTegDaBZHQJYkt0JWvKV1fZQoaAZoCWgPQwhHOC140aVlQJSGlFKUaBVN6ANoFkdAli1RHf/FSHV9lChoBmgJaA9DCCp0XmOXRl5AlIaUUpRoFU3oA2gWR0CWLVM9r434dX2UKGgGaAloD0MIFTqvscsPZkCUhpRSlGgVTegDaBZHQJYwuw6hg3N1fZQoaAZoCWgPQwgArfnxF5tgQJSGlFKUaBVN6ANoFkdAlkcS/0ulGnV9lChoBmgJaA9DCECiCRQxZ2RAlIaUUpRoFU3oA2gWR0CWSyCeVcD9dX2UKGgGaAloD0MIs+veisSlXUCUhpRSlGgVTegDaBZHQJZM+KZUkv91fZQoaAZoCWgPQwjZlCu8y5UeQJSGlFKUaBVL7mgWR0CWTY0cfeUIdX2UKGgGaAloD0MIzCpsBrhUZUCUhpRSlGgVTegDaBZHQJZOT5P/JeV1fZQoaAZoCWgPQwg6lKEqprhjQJSGlFKUaBVN6ANoFkdAlk9HmV7hN3V9lChoBmgJaA9DCDRmEvUCj2NAlIaUUpRoFU3oA2gWR0CWVNJp35erdX2UKGgGaAloD0MIZJP8iN/ZZUCUhpRSlGgVTegDaBZHQJZXl2hZha11fZQoaAZoCWgPQwgonrMFBFdhQJSGlFKUaBVN6ANoFkdAlllRVZLZjHV9lChoBmgJaA9DCGyWy0bnMGJAlIaUUpRoFU3oA2gWR0CWWbJQtSQ6dX2UKGgGaAloD0MIrJDyk2o/SkCUhpRSlGgVS+1oFkdAllp5cxCY1HV9lChoBmgJaA9DCHzuBPsvBmJAlIaUUpRoFU3oA2gWR0CWXaC6pYLcdX2UKGgGaAloD0MI0PI8uDudY0CUhpRSlGgVTegDaBZHQJZjLcxj8UF1fZQoaAZoCWgPQwjVCWgibI5lQJSGlFKUaBVN6ANoFkdAlmVlMyrPt3V9lChoBmgJaA9DCOYivhOzRGVAlIaUUpRoFU3oA2gWR0CWb3NYr8R+dX2UKGgGaAloD0MIArwFEhQZZ0CUhpRSlGgVTegDaBZHQJZ3z/4qPOp1fZQoaAZoCWgPQwiJKZFEr9tlQJSGlFKUaBVN6ANoFkdAlns9VWCEpXV9lChoBmgJaA9DCA8PYfw0SGJAlIaUUpRoFU3oA2gWR0CWfsIRh+fAdX2UKGgGaAloD0MIwY7/AkG/W0CUhpRSlGgVTegDaBZHQJaaZ3JPqLV1fZQoaAZoCWgPQwj5n/zdOyBkQJSGlFKUaBVN6ANoFkdAlpw7kfcN6XV9lChoBmgJaA9DCLplh/iHQGFAlIaUUpRoFU3oA2gWR0CWnM4tpVS5dX2UKGgGaAloD0MIYTdsW5SIX0CUhpRSlGgVTegDaBZHQJaekXBP9DR1fZQoaAZoCWgPQwgB3Zcz29RaQJSGlFKUaBVN6ANoFkdAlqRVKoQ4CXV9lChoBmgJaA9DCFsnLscrPmNAlIaUUpRoFU3oA2gWR0CWp1acqe9SdX2UKGgGaAloD0MIcD51rNK2YECUhpRSlGgVTegDaBZHQJapK9CeEqV1fZQoaAZoCWgPQwhQATCewYtjQJSGlFKUaBVN6ANoFkdAlqmZbyH2y3V9lChoBmgJaA9DCEEuceSBvV9AlIaUUpRoFU3oA2gWR0CWqme7L+xXdX2UKGgGaAloD0MI+IkD6PdiY0CUhpRSlGgVTegDaBZHQJatpRuTA311fZQoaAZoCWgPQwhvLv62p6RiQJSGlFKUaBVN6ANoFkdAlrOQE6kqMHV9lChoBmgJaA9DCJXTnpLzAWJAlIaUUpRoFU3oA2gWR0CWtdCJ40MxdX2UKGgGaAloD0MI7KS+LO00FECUhpRSlGgVS+poFkdAlrtaGQCCBnV9lChoBmgJaA9DCCttcY3PF2VAlIaUUpRoFU3oA2gWR0CWv7sVLzwudX2UKGgGaAloD0MI1NSytb7ANUCUhpRSlGgVTRIBaBZHQJbDLel9Brx1fZQoaAZoCWgPQwgxtaUO8hVjQJSGlFKUaBVN6ANoFkdAlse4YaYNRXV9lChoBmgJaA9DCO4G0VrRZ2VAlIaUUpRoFU3oA2gWR0CWy0ObRWtEdX2UKGgGaAloD0MIlpaRes9AZECUhpRSlGgVTegDaBZHQJbOpYyO7xx1fZQoaAZoCWgPQwhxOPOrObZeQJSGlFKUaBVN6ANoFkdAluXjpLVWj3V9lChoBmgJaA9DCE9cjlcgJ21AlIaUUpRoFU0tAWgWR0CW53yaNMoMdX2UKGgGaAloD0MIVRSvsrZib0CUhpRSlGgVTbsBaBZHQJbnwaDPGAF1fZQoaAZoCWgPQwikxRnDHO5jQJSGlFKUaBVN6ANoFkdAlufDijtXxXV9lChoBmgJaA9DCOkMjLwsxWRAlIaUUpRoFU3oA2gWR0CW6Eb9qDbrdX2UKGgGaAloD0MIhJ1i1aDJZECUhpRSlGgVTegDaBZHQJbpuxIJ7cB1fZQoaAZoCWgPQwhUOlj/Z2hkQJSGlFKUaBVN6ANoFkdAlu5w2MsH0XV9lChoBmgJaA9DCOVFJuDXgDfAlIaUUpRoFUvOaBZHQJbw3f8/D+B1fZQoaAZoCWgPQwiSQe4iTEhbQJSGlFKUaBVN6ANoFkdAlvEBI4EOiHV9lChoBmgJaA9DCDkKEAUziVxAlIaUUpRoFU3oA2gWR0CW8nODrZ8KdX2UKGgGaAloD0MIK/pDM09EY0CUhpRSlGgVTegDaBZHQJbyzSeAd4p1fZQoaAZoCWgPQwgjaTf6GOxhQJSGlFKUaBVN6ANoFkdAlvN061b7j3V9lChoBmgJaA9DCL8MxohEAWNAlIaUUpRoFU3oA2gWR0CW/fnlnyuqdX2UKGgGaAloD0MIs193uvNLZkCUhpRSlGgVTegDaBZHQJcK26vq1PZ1fZQoaAZoCWgPQwiQZcHEn/dhQJSGlFKUaBVN6ANoFkdAlxk0RaouPHV9lChoBmgJaA9DCH6qCg3EJmJAlIaUUpRoFU3oA2gWR0CXHWEbo8p1dX2UKGgGaAloD0MIa0Wb49w4X0CUhpRSlGgVTegDaBZHQJchjQVsUIt1fZQoaAZoCWgPQwgvpS4Zx1VlQJSGlFKUaBVN6ANoFkdAlz6KZ6Uqx3V9lChoBmgJaA9DCD7ONGH7k2JAlIaUUpRoFU3oA2gWR0CXQHAHE/B4dX2UKGgGaAloD0MIIhlybD3bUkCUhpRSlGgVTegDaBZHQJdAxMK1G9Z1fZQoaAZoCWgPQwjCUIcVbvheQJSGlFKUaBVN6ANoFkdAl0FhbGFSKnV9lChoBmgJaA9DCAiu8gRC1GRAlIaUUpRoFU3oA2gWR0CXQztqpLmIdX2UKGgGaAloD0MIu0ihLHzaXECUhpRSlGgVTegDaBZHQJdJFfWtlqd1fZQoaAZoCWgPQwjBGfz9Yj5gQJSGlFKUaBVN6ANoFkdAl0vzaoMrmXV9lChoBmgJaA9DCEJD/wQXQl1AlIaUUpRoFU3oA2gWR0CXTB/Y8Md+dX2UKGgGaAloD0MIDMwKRbpLXkCUhpRSlGgVTegDaBZHQJdN4tEofCB1fZQoaAZoCWgPQwiLNPEOcDFgQJSGlFKUaBVN6ANoFkdAl05AdKdxyXV9lChoBmgJaA9DCHAJwD+lJWZAlIaUUpRoFU3oA2gWR0CXTvZmqYJFdX2UKGgGaAloD0MI9+XMdoWSXkCUhpRSlGgVTegDaBZHQJdZ0kzGgjB1fZQoaAZoCWgPQwgsDJHTV/xhQJSGlFKUaBVN6ANoFkdAl2V6n752yXV9lChoBmgJaA9DCHR+iuNAdGRAlIaUUpRoFU3oA2gWR0CXbqrksBhhdX2UKGgGaAloD0MIVpv/V53RYUCUhpRSlGgVTegDaBZHQJdyeJVKf4B1fZQoaAZoCWgPQwgrMc9KWu9bQJSGlFKUaBVN6ANoFkdAl3Y7xAjY7XV9lChoBmgJaA9DCC3NrRBWUl1AlIaUUpRoFU3oA2gWR0CXerFJQLuydX2UKGgGaAloD0MIRWRYxZsvYUCUhpRSlGgVTegDaBZHQJePmuloDgZ1fZQoaAZoCWgPQwgoLPGAsmFfQJSGlFKUaBVN6ANoFkdAl4/jER8MNXV9lChoBmgJaA9DCPEpAMYzgmRAlIaUUpRoFU3oA2gWR0CXkHcLSeAedX2UKGgGaAloD0MIZeQs7GnhZECUhpRSlGgVTegDaBZHQJeSRNg0CRx1fZQoaAZoCWgPQwhvK702G6FlQJSGlFKUaBVN6ANoFkdAl5fOlXRw63V9lChoBmgJaA9DCPjhICHKdxbAlIaUUpRoFUvcaBZHQJeZWciGFi91fZQoaAZoCWgPQwgl5llJq85hQJSGlFKUaBVN6ANoFkdAl5pNcOby6XV9lChoBmgJaA9DCFFsBU1Lbl5AlIaUUpRoFU3oA2gWR0CXmm/7BO58dX2UKGgGaAloD0MIIeaSqm2QYUCUhpRSlGgVTegDaBZHQJeb2SMcZLt1fZQoaAZoCWgPQwhzE7U0t6BfQJSGlFKUaBVN6ANoFkdAl5wgXQ+lj3V9lChoBmgJaA9DCMfZdATwY2JAlIaUUpRoFU3oA2gWR0CXnLBMSK3vdX2UKGgGaAloD0MIk8ZoHVXFKkCUhpRSlGgVS+VoFkdAl6NdapxWDHV9lChoBmgJaA9DCKs/wjDg4mBAlIaUUpRoFU3oA2gWR0CXpZ0tyxRmdX2UKGgGaAloD0MIsryrHjDvMECUhpRSlGgVS/loFkdAl6h++AVfu3V9lChoBmgJaA9DCJkoQup2+mJAlIaUUpRoFU3oA2gWR0CXr8MvAXVLdX2UKGgGaAloD0MIMo/8wcDpRUCUhpRSlGgVTQEBaBZHQJe02iqQzUJ1fZQoaAZoCWgPQwhzEHS0qi1EQJSGlFKUaBVL8WgWR0CXtxzUI9kjdX2UKGgGaAloD0MIRdeFHxzuYkCUhpRSlGgVTegDaBZHQJe4Sgam4y51fZQoaAZoCWgPQwjAAwMIn1hkQJSGlFKUaBVN6ANoFkdAl7vJ7gKnenV9lChoBmgJaA9DCAQ5KGEmwWFAlIaUUpRoFU3oA2gWR0CXv1n8baRIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 260, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
model1000000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32ae23fb363bb5fd16bc40208f6b3439b3c2fc3070a16956551f5d1bd771fced
|
3 |
+
size 147334
|
model1000000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
model1000000/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b69d9d9d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b69d9da60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b69d9daf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b69d9db80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3b69d9dc10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3b69d9dca0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b69d9dd30>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3b69d9ddc0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b69d9de50>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b69d9dee0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b69d9df70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3b69d9f030>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670532799061173181,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE10Kj7E350+xi4FvvKvYL41ydE7YZA9vQAAAAAAAAAAzSbSPFKwwLkQSAo4gt9PM8tzGLprrSG3AACAPwAAgD8z1l4+lC/KvBAqk7r7cAs5zpgvvqHSwDkAAIA/AACAP5opCz3DGXm6xQ9VuoQtVTb29r06yxx4OQAAgD8AAIA/LZC6PtMcNT/NZCO97mRividpoD3Q27u9AAAAAAAAAACz21o99ggcuurA67qEhwG1w7jxuv5DCToAAIA/AACAP801gj2Fk8m5nuvMOXBKCjbXA5m7+JX0uAAAgD8AAAAAGtkXvoMvE7wxiyM7GyEQOYQJgz2yNVa6AACAPwAAgD+mTrA9SMezurZ0IDnmcRg0Pc/6uH97N7gAAIA/AACAPzNz0jlWH1A9gva0vQnggb7/ejW9pV63PAAAAAAAAAAAmhFzvdfzZrkz5sM7RvFDNf9oezqRyjs0AACAPwAAgD+zhKa9j7Y1uqIosTvMIQg2M2jkOqdEBTUAAAAAAACAP7OCWL3hoIC6c0V5ObPbPjQL6DE5tOOQuAAAgD8AAIA/QGoLPnvroDsuEZK7MnULulMuQj1w2f26AACAPwAAgD/mAQm9yJOsvEUC+L1iGfa9kbUGPqaoBz8AAIA/AACAPwCn+DwpAGK6+qdvuhVHNzazrys6HTqLOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg4b+CS59ZkCUhpRSlIwBbJRN6AOMAXSUR0CWDkcp9ZzQdX2UKGgGaAloD0MIXyhgOxgSY0CUhpRSlGgVTegDaBZHQJYP3Wwu/UR1fZQoaAZoCWgPQwi3Y+qu7CJDQJSGlFKUaBVL+WgWR0CWEDImw7kodX2UKGgGaAloD0MIj1a1pKOxZ0CUhpRSlGgVTegDaBZHQJYT1At4A0d1fZQoaAZoCWgPQwiXAtL+B5VlQJSGlFKUaBVN6ANoFkdAlhjCNbTts3V9lChoBmgJaA9DCPfkYaHWIWRAlIaUUpRoFU3oA2gWR0CWGsiQDFIedX2UKGgGaAloD0MIoMTnTrBgYUCUhpRSlGgVTegDaBZHQJYkt0JWvKV1fZQoaAZoCWgPQwhHOC140aVlQJSGlFKUaBVN6ANoFkdAli1RHf/FSHV9lChoBmgJaA9DCCp0XmOXRl5AlIaUUpRoFU3oA2gWR0CWLVM9r434dX2UKGgGaAloD0MIFTqvscsPZkCUhpRSlGgVTegDaBZHQJYwuw6hg3N1fZQoaAZoCWgPQwgArfnxF5tgQJSGlFKUaBVN6ANoFkdAlkcS/0ulGnV9lChoBmgJaA9DCECiCRQxZ2RAlIaUUpRoFU3oA2gWR0CWSyCeVcD9dX2UKGgGaAloD0MIs+veisSlXUCUhpRSlGgVTegDaBZHQJZM+KZUkv91fZQoaAZoCWgPQwjZlCu8y5UeQJSGlFKUaBVL7mgWR0CWTY0cfeUIdX2UKGgGaAloD0MIzCpsBrhUZUCUhpRSlGgVTegDaBZHQJZOT5P/JeV1fZQoaAZoCWgPQwg6lKEqprhjQJSGlFKUaBVN6ANoFkdAlk9HmV7hN3V9lChoBmgJaA9DCDRmEvUCj2NAlIaUUpRoFU3oA2gWR0CWVNJp35erdX2UKGgGaAloD0MIZJP8iN/ZZUCUhpRSlGgVTegDaBZHQJZXl2hZha11fZQoaAZoCWgPQwgonrMFBFdhQJSGlFKUaBVN6ANoFkdAlllRVZLZjHV9lChoBmgJaA9DCGyWy0bnMGJAlIaUUpRoFU3oA2gWR0CWWbJQtSQ6dX2UKGgGaAloD0MIrJDyk2o/SkCUhpRSlGgVS+1oFkdAllp5cxCY1HV9lChoBmgJaA9DCHzuBPsvBmJAlIaUUpRoFU3oA2gWR0CWXaC6pYLcdX2UKGgGaAloD0MI0PI8uDudY0CUhpRSlGgVTegDaBZHQJZjLcxj8UF1fZQoaAZoCWgPQwjVCWgibI5lQJSGlFKUaBVN6ANoFkdAlmVlMyrPt3V9lChoBmgJaA9DCOYivhOzRGVAlIaUUpRoFU3oA2gWR0CWb3NYr8R+dX2UKGgGaAloD0MIArwFEhQZZ0CUhpRSlGgVTegDaBZHQJZ3z/4qPOp1fZQoaAZoCWgPQwiJKZFEr9tlQJSGlFKUaBVN6ANoFkdAlns9VWCEpXV9lChoBmgJaA9DCA8PYfw0SGJAlIaUUpRoFU3oA2gWR0CWfsIRh+fAdX2UKGgGaAloD0MIwY7/AkG/W0CUhpRSlGgVTegDaBZHQJaaZ3JPqLV1fZQoaAZoCWgPQwj5n/zdOyBkQJSGlFKUaBVN6ANoFkdAlpw7kfcN6XV9lChoBmgJaA9DCLplh/iHQGFAlIaUUpRoFU3oA2gWR0CWnM4tpVS5dX2UKGgGaAloD0MIYTdsW5SIX0CUhpRSlGgVTegDaBZHQJaekXBP9DR1fZQoaAZoCWgPQwgB3Zcz29RaQJSGlFKUaBVN6ANoFkdAlqRVKoQ4CXV9lChoBmgJaA9DCFsnLscrPmNAlIaUUpRoFU3oA2gWR0CWp1acqe9SdX2UKGgGaAloD0MIcD51rNK2YECUhpRSlGgVTegDaBZHQJapK9CeEqV1fZQoaAZoCWgPQwhQATCewYtjQJSGlFKUaBVN6ANoFkdAlqmZbyH2y3V9lChoBmgJaA9DCEEuceSBvV9AlIaUUpRoFU3oA2gWR0CWqme7L+xXdX2UKGgGaAloD0MI+IkD6PdiY0CUhpRSlGgVTegDaBZHQJatpRuTA311fZQoaAZoCWgPQwhvLv62p6RiQJSGlFKUaBVN6ANoFkdAlrOQE6kqMHV9lChoBmgJaA9DCJXTnpLzAWJAlIaUUpRoFU3oA2gWR0CWtdCJ40MxdX2UKGgGaAloD0MI7KS+LO00FECUhpRSlGgVS+poFkdAlrtaGQCCBnV9lChoBmgJaA9DCCttcY3PF2VAlIaUUpRoFU3oA2gWR0CWv7sVLzwudX2UKGgGaAloD0MI1NSytb7ANUCUhpRSlGgVTRIBaBZHQJbDLel9Brx1fZQoaAZoCWgPQwgxtaUO8hVjQJSGlFKUaBVN6ANoFkdAlse4YaYNRXV9lChoBmgJaA9DCO4G0VrRZ2VAlIaUUpRoFU3oA2gWR0CWy0ObRWtEdX2UKGgGaAloD0MIlpaRes9AZECUhpRSlGgVTegDaBZHQJbOpYyO7xx1fZQoaAZoCWgPQwhxOPOrObZeQJSGlFKUaBVN6ANoFkdAluXjpLVWj3V9lChoBmgJaA9DCE9cjlcgJ21AlIaUUpRoFU0tAWgWR0CW53yaNMoMdX2UKGgGaAloD0MIVRSvsrZib0CUhpRSlGgVTbsBaBZHQJbnwaDPGAF1fZQoaAZoCWgPQwikxRnDHO5jQJSGlFKUaBVN6ANoFkdAlufDijtXxXV9lChoBmgJaA9DCOkMjLwsxWRAlIaUUpRoFU3oA2gWR0CW6Eb9qDbrdX2UKGgGaAloD0MIhJ1i1aDJZECUhpRSlGgVTegDaBZHQJbpuxIJ7cB1fZQoaAZoCWgPQwhUOlj/Z2hkQJSGlFKUaBVN6ANoFkdAlu5w2MsH0XV9lChoBmgJaA9DCOVFJuDXgDfAlIaUUpRoFUvOaBZHQJbw3f8/D+B1fZQoaAZoCWgPQwiSQe4iTEhbQJSGlFKUaBVN6ANoFkdAlvEBI4EOiHV9lChoBmgJaA9DCDkKEAUziVxAlIaUUpRoFU3oA2gWR0CW8nODrZ8KdX2UKGgGaAloD0MIK/pDM09EY0CUhpRSlGgVTegDaBZHQJbyzSeAd4p1fZQoaAZoCWgPQwgjaTf6GOxhQJSGlFKUaBVN6ANoFkdAlvN061b7j3V9lChoBmgJaA9DCL8MxohEAWNAlIaUUpRoFU3oA2gWR0CW/fnlnyuqdX2UKGgGaAloD0MIs193uvNLZkCUhpRSlGgVTegDaBZHQJcK26vq1PZ1fZQoaAZoCWgPQwiQZcHEn/dhQJSGlFKUaBVN6ANoFkdAlxk0RaouPHV9lChoBmgJaA9DCH6qCg3EJmJAlIaUUpRoFU3oA2gWR0CXHWEbo8p1dX2UKGgGaAloD0MIa0Wb49w4X0CUhpRSlGgVTegDaBZHQJchjQVsUIt1fZQoaAZoCWgPQwgvpS4Zx1VlQJSGlFKUaBVN6ANoFkdAlz6KZ6Uqx3V9lChoBmgJaA9DCD7ONGH7k2JAlIaUUpRoFU3oA2gWR0CXQHAHE/B4dX2UKGgGaAloD0MIIhlybD3bUkCUhpRSlGgVTegDaBZHQJdAxMK1G9Z1fZQoaAZoCWgPQwjCUIcVbvheQJSGlFKUaBVN6ANoFkdAl0FhbGFSKnV9lChoBmgJaA9DCAiu8gRC1GRAlIaUUpRoFU3oA2gWR0CXQztqpLmIdX2UKGgGaAloD0MIu0ihLHzaXECUhpRSlGgVTegDaBZHQJdJFfWtlqd1fZQoaAZoCWgPQwjBGfz9Yj5gQJSGlFKUaBVN6ANoFkdAl0vzaoMrmXV9lChoBmgJaA9DCEJD/wQXQl1AlIaUUpRoFU3oA2gWR0CXTB/Y8Md+dX2UKGgGaAloD0MIDMwKRbpLXkCUhpRSlGgVTegDaBZHQJdN4tEofCB1fZQoaAZoCWgPQwiLNPEOcDFgQJSGlFKUaBVN6ANoFkdAl05AdKdxyXV9lChoBmgJaA9DCHAJwD+lJWZAlIaUUpRoFU3oA2gWR0CXTvZmqYJFdX2UKGgGaAloD0MI9+XMdoWSXkCUhpRSlGgVTegDaBZHQJdZ0kzGgjB1fZQoaAZoCWgPQwgsDJHTV/xhQJSGlFKUaBVN6ANoFkdAl2V6n752yXV9lChoBmgJaA9DCHR+iuNAdGRAlIaUUpRoFU3oA2gWR0CXbqrksBhhdX2UKGgGaAloD0MIVpv/V53RYUCUhpRSlGgVTegDaBZHQJdyeJVKf4B1fZQoaAZoCWgPQwgrMc9KWu9bQJSGlFKUaBVN6ANoFkdAl3Y7xAjY7XV9lChoBmgJaA9DCC3NrRBWUl1AlIaUUpRoFU3oA2gWR0CXerFJQLuydX2UKGgGaAloD0MIRWRYxZsvYUCUhpRSlGgVTegDaBZHQJePmuloDgZ1fZQoaAZoCWgPQwgoLPGAsmFfQJSGlFKUaBVN6ANoFkdAl4/jER8MNXV9lChoBmgJaA9DCPEpAMYzgmRAlIaUUpRoFU3oA2gWR0CXkHcLSeAedX2UKGgGaAloD0MIZeQs7GnhZECUhpRSlGgVTegDaBZHQJeSRNg0CRx1fZQoaAZoCWgPQwhvK702G6FlQJSGlFKUaBVN6ANoFkdAl5fOlXRw63V9lChoBmgJaA9DCPjhICHKdxbAlIaUUpRoFUvcaBZHQJeZWciGFi91fZQoaAZoCWgPQwgl5llJq85hQJSGlFKUaBVN6ANoFkdAl5pNcOby6XV9lChoBmgJaA9DCFFsBU1Lbl5AlIaUUpRoFU3oA2gWR0CXmm/7BO58dX2UKGgGaAloD0MIIeaSqm2QYUCUhpRSlGgVTegDaBZHQJeb2SMcZLt1fZQoaAZoCWgPQwhzE7U0t6BfQJSGlFKUaBVN6ANoFkdAl5wgXQ+lj3V9lChoBmgJaA9DCMfZdATwY2JAlIaUUpRoFU3oA2gWR0CXnLBMSK3vdX2UKGgGaAloD0MIk8ZoHVXFKkCUhpRSlGgVS+VoFkdAl6NdapxWDHV9lChoBmgJaA9DCKs/wjDg4mBAlIaUUpRoFU3oA2gWR0CXpZ0tyxRmdX2UKGgGaAloD0MIsryrHjDvMECUhpRSlGgVS/loFkdAl6h++AVfu3V9lChoBmgJaA9DCJkoQup2+mJAlIaUUpRoFU3oA2gWR0CXr8MvAXVLdX2UKGgGaAloD0MIMo/8wcDpRUCUhpRSlGgVTQEBaBZHQJe02iqQzUJ1fZQoaAZoCWgPQwhzEHS0qi1EQJSGlFKUaBVL8WgWR0CXtxzUI9kjdX2UKGgGaAloD0MIRdeFHxzuYkCUhpRSlGgVTegDaBZHQJe4Sgam4y51fZQoaAZoCWgPQwjAAwMIn1hkQJSGlFKUaBVN6ANoFkdAl7vJ7gKnenV9lChoBmgJaA9DCAQ5KGEmwWFAlIaUUpRoFU3oA2gWR0CXv1n8baRIdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 260,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
model1000000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4ef4533c2c366ab3c0307fa8e8b1070395415c49a21085b8495b1062e9162ca
|
3 |
+
size 88057
|
model1000000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e375f3ba74dedfad486baf75972f6be4caaec35a8986191a249845359ecfdca3
|
3 |
+
size 43201
|
model1000000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
model1000000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (169 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.5781779443163, "std_reward": 12.487761293858334, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T21:33:08.668827"}
|