File size: 2,435 Bytes
392a2bc
 
 
 
 
 
 
 
63d3333
392a2bc
 
 
 
 
63d3333
392a2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552059a
392a2bc
 
 
 
 
 
 
 
 
 
 
 
 
63d3333
392a2bc
 
 
 
 
 
63d3333
392a2bc
 
 
 
 
 
 
552059a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: A rugged face with a thick mustache, dark eyes under a wide-brimmed hat. The expression is stern and untrustworthy, with wrinkles indicating years of experience as a notorious thief. Dressed in worn-out clothes, he carries an air of danger..
  parameters:
    negative_prompt: >-
      worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon,
      unreal
  output:
    url: prompt1.png
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: null
license: mit
---
# pytorch_lora_weights.safetensors

<Gallery />

## Model description 

This model is a fine-tuned version of the Stable Diffusion architecture, leveraging the Low-Rank Adaptation (LoRA) technique. It has been trained using the CelebA-HQ  and FFHQ datasets, both renowned for their high-quality images of human faces. 

### Training Details:

- **Base Model**: Stable Diffusion
- **Adaptation Technique**: Low-Rank Adaptation (LoRA)
- **Datasets**: CelebA-HQ (30,000 images), FFHQ (70,000 images)
- **Resolution**: resolution : 512*512 fine-tuning for detailed facial synthesis

### Example Usages:


```py

import torch
from diffusers import StableDiffusionPipeline,UNet2DConditionModel

pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")

pipeline.load_lora_weights("lokesh6309/Diff_Face", weight_name="pytorch_lora_weights.safetensors")

NEGATIVE_PROMPT = "worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon, unreal"
text = 'A young woman with smile, wearing a purple hat.'

lora_image = pipeline(text,negative_prompt=NEGATIVE_PROMPT).images[0]

display(lora_image)

```

### Results

We use four prompts as follows:
A rugged face with a thick mustache, dark eyes under a wide-brimmed hat. The expression is stern and untrustworthy, with wrinkles indicating years of experience as a notorious thief. Dressed in worn-out clothes, he carries an air of danger.

The **negative prompt** are the same as the example codes. All the results are randomly generated and **not** cherry-picked. 

If the generation effect is not good, try adding a negative prompt, or try different prompts and seeds.


![Result](./prompt1.png)



## Download model

Weights for this model are available in Safetensors format.

[Download](/lokesh6309/Diff_Face/tree/main) them in the Files & versions tab.