|
|
|
import os |
|
import torch |
|
import gradio as gr |
|
import numpy as np |
|
|
|
from PIL import Image |
|
|
|
from diffusers import StableDiffusionPipeline,UNet2DConditionModel |
|
|
|
NEGATIVE_PROMPT = "worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon, unreal" |
|
|
|
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder='unet').to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
unet=unet) |
|
|
|
pipeline.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors") |
|
|
|
|
|
def generate_image(text,num_batch,is_use_lora,num_inference_steps): |
|
|
|
if is_use_lora: |
|
pipeline.enable_lora() |
|
else: |
|
pipeline.disable_lora() |
|
|
|
print('begin inference with text:', text, 'is_use_lora:', is_use_lora) |
|
image = pipeline(text, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_batch, |
|
negative_prompt=NEGATIVE_PROMPT).images |
|
return image |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
is_use_lora = gr.Checkbox(label="Use LoRA", value=False) |
|
num_batch = gr.Number(value=4,label="Number of batch") |
|
num_inference_steps = gr.Number(value=20,label="Number of inference steps") |
|
|
|
text_input = gr.Textbox(lines=2, label="Input text", value="A young woman with long hair and a big smile.") |
|
generate_button = gr.Button(value="Generate image") |
|
|
|
|
|
image_out = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", object_fit="contain", height="512") |
|
|
|
generate_button.click(generate_image, inputs=[text_input,num_batch,is_use_lora,num_inference_steps], outputs=image_out) |
|
|
|
demo.launch(server_port=7861) |
|
|
|
|