|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fine-tuning script for Stable Diffusion for text2image with support for LoRA.""" |
|
|
|
from typing import Any, Dict, Iterable, List, Optional, Union |
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from pathlib import Path |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from PIL import Image |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from datasets import load_dataset,interleave_datasets |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from peft import LoraConfig |
|
from peft.utils import get_peft_model_state_dict |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
import diffusers |
|
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionPipeline, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import compute_snr |
|
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available |
|
|
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
|
|
check_min_version("0.25.0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32): |
|
if not isinstance(model, list): |
|
model = [model] |
|
for m in model: |
|
for param in m.parameters(): |
|
|
|
if param.requires_grad: |
|
param.data = param.to(dtype) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--dataset_json", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A json file containing the dataset. The file must contain a list of dictionaries, where each dictionary" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument('--name_column', type=str, default='name', help='The column of the dataset containing the name of the dataset.') |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image." |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=1, |
|
help=( |
|
"Run fine-tuning validation every X epochs. The validation process consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="sd-model-finetuned-lora", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--snr_gamma", |
|
type=float, |
|
default=None, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--prediction_type", |
|
type=str, |
|
default=None, |
|
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.", |
|
) |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default='no', |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") |
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=4, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_json is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
|
|
return args |
|
|
|
|
|
DATASET_NAME_MAPPING = { |
|
"celeba-hq": '/mnt/pami202/blli/DATASET/CelebAMask-HQ', |
|
"ffhq_1024": '/mnt/pami202/blli/DATASET/FFHQ', |
|
} |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
import wandb |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision |
|
) |
|
text_encoder = CLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
unet.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
for param in unet.parameters(): |
|
param.requires_grad_(False) |
|
|
|
unet_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
unet.add_adapter(unet_lora_config) |
|
if args.mixed_precision == "fp16": |
|
|
|
cast_training_params(unet, dtype=torch.float32) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
lora_layers = filter(lambda p: p.requires_grad, unet.parameters()) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
optimizer = optimizer_cls( |
|
lora_layers, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = load_dataset('json', data_files=args.dataset_json) |
|
|
|
|
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
name_column = args.name_column |
|
image_column = args.image_column |
|
caption_column = args.caption_column |
|
|
|
|
|
|
|
def tokenize_captions(examples, is_train=True): |
|
captions = [] |
|
for caption in examples[caption_column]: |
|
if isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
else: |
|
raise ValueError( |
|
f"Caption column `{caption_column}` should contain either strings or lists of strings." |
|
) |
|
inputs = tokenizer( |
|
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
return inputs.input_ids |
|
|
|
|
|
train_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), |
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
def preprocess_train(examples): |
|
images = [] |
|
for name,image in zip(examples[name_column],examples[image_column]): |
|
path = DATASET_NAME_MAPPING[name] |
|
images.append(Image.open(os.path.join(path, image)).convert("RGB")) |
|
|
|
|
|
examples["pixel_values"] = [train_transforms(image) for image in images] |
|
examples["input_ids"] = tokenize_captions(examples) |
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
input_ids = torch.stack([example["input_ids"] for example in examples]) |
|
return {"pixel_values": pixel_values, "input_ids": input_ids} |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("text2image-fine-tune", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
|
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
|
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
unet.train() |
|
train_loss = 0.0 |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
if args.noise_offset: |
|
|
|
noise += args.noise_offset * torch.randn( |
|
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device |
|
) |
|
|
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0] |
|
|
|
|
|
if args.prediction_type is not None: |
|
|
|
noise_scheduler.register_to_config(prediction_type=args.prediction_type) |
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] |
|
|
|
if args.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
|
|
snr = compute_snr(noise_scheduler, timesteps) |
|
mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min( |
|
dim=1 |
|
)[0] |
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
mse_loss_weights = mse_loss_weights / snr |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
mse_loss_weights = mse_loss_weights / (snr + 1) |
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
train_loss += avg_loss.item() / args.gradient_accumulation_steps |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = lora_layers |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
accelerator.log({"train_loss": train_loss}, step=global_step) |
|
train_loss = 0.0 |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
|
|
unwrapped_unet = unwrap_model(unet) |
|
unet_lora_state_dict = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(unwrapped_unet) |
|
) |
|
|
|
StableDiffusionPipeline.save_lora_weights( |
|
save_directory=save_path, |
|
unet_lora_layers=unet_lora_state_dict, |
|
safe_serialization=True, |
|
) |
|
|
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompt is not None and (epoch % args.validation_epochs == 0 or epoch == 0): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unwrap_model(unet), |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device) |
|
if args.seed is not None: |
|
generator = generator.manual_seed(args.seed) |
|
images = [] |
|
with torch.cuda.amp.autocast(): |
|
for _ in range(args.num_validation_images): |
|
images.append( |
|
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] |
|
) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = unet.to(torch.float32) |
|
|
|
unwrapped_unet = unwrap_model(unet) |
|
unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unwrapped_unet)) |
|
StableDiffusionPipeline.save_lora_weights( |
|
save_directory=args.output_dir, |
|
unet_lora_layers=unet_lora_state_dict, |
|
safe_serialization=True, |
|
) |
|
|
|
|
|
|
|
if args.validation_prompt is not None: |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = pipeline.to(accelerator.device) |
|
|
|
|
|
pipeline.load_lora_weights(args.output_dir) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device) |
|
if args.seed is not None: |
|
generator = generator.manual_seed(args.seed) |
|
images = [] |
|
with torch.cuda.amp.autocast(): |
|
for _ in range(args.num_validation_images): |
|
images.append( |
|
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] |
|
) |
|
|
|
for tracker in accelerator.trackers: |
|
if len(images) != 0: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"test": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |