import os import torch import gradio as gr import numpy as np from PIL import Image from diffusers import StableDiffusionPipeline,UNet2DConditionModel NEGATIVE_PROMPT = "worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon, unreal" unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder='unet').to("cuda") # unet.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", unet=unet) pipeline.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors") # Define a function to process input and return output def generate_image(text,num_batch,is_use_lora,num_inference_steps): # Process text to generate image if is_use_lora: pipeline.enable_lora() else: pipeline.disable_lora() print('begin inference with text:', text, 'is_use_lora:', is_use_lora) image = pipeline(text, num_inference_steps=num_inference_steps, num_images_per_prompt=num_batch, negative_prompt=NEGATIVE_PROMPT).images return image with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Row(): is_use_lora = gr.Checkbox(label="Use LoRA", value=False) num_batch = gr.Number(value=4,label="Number of batch") num_inference_steps = gr.Number(value=20,label="Number of inference steps") text_input = gr.Textbox(lines=2, label="Input text", value="A young woman with long hair and a big smile.") generate_button = gr.Button(value="Generate image") # image_out = gr.Image(label="Output image", height=512,width=512) image_out = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", object_fit="contain", height="512") generate_button.click(generate_image, inputs=[text_input,num_batch,is_use_lora,num_inference_steps], outputs=image_out) demo.launch(server_port=7861)