|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
import numpy as np |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.models.attention import GatedSelfAttentionDense |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unets import UNet3DConditionModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.text_to_video_synthesis import \ |
|
TextToVideoSDPipelineOutput |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import (USE_PEFT_BACKEND, deprecate, logging, |
|
replace_example_docstring, scale_lora_layers, |
|
unscale_lora_layers) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import TextToVideoSDPipeline |
|
>>> from diffusers.utils import export_to_video |
|
|
|
>>> pipe = TextToVideoSDPipeline.from_pretrained( |
|
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" |
|
... ) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "Spiderman is surfing" |
|
>>> video_frames = pipe(prompt).frames |
|
>>> video_path = export_to_video(video_frames) |
|
>>> video_path |
|
``` |
|
""" |
|
|
|
|
|
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]: |
|
|
|
|
|
mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1) |
|
std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1) |
|
|
|
video = video.mul_(std).add_(mean) |
|
video.clamp_(0, 1) |
|
|
|
i, c, f, h, w = video.shape |
|
images = video.permute(2, 3, 0, 4, 1).reshape( |
|
f, h, i * w, c |
|
) |
|
|
|
images = images.unbind(dim=0) |
|
images = [(image.cpu().numpy() * 255).astype("uint8") |
|
for image in images] |
|
return images |
|
|
|
|
|
class GroundedTextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): |
|
r""" |
|
Pipeline for text-to-video generation. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer (`CLIPTokenizer`): |
|
A [`~transformers.CLIPTokenizer`] to tokenize text. |
|
unet ([`UNet3DConditionModel`]): |
|
A [`UNet3DConditionModel`] to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet3DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** ( |
|
len(self.vae.config.block_out_channels) - 1) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", |
|
deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat( |
|
[prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm( |
|
prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to( |
|
dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt( |
|
uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
batch_size, channels, num_frames, height, width = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape( |
|
batch_size * num_frames, channels, height, width) |
|
|
|
image = self.vae.decode(latents).sample |
|
video = ( |
|
image[None, :] |
|
.reshape( |
|
( |
|
batch_size, |
|
num_frames, |
|
-1, |
|
) |
|
+ image.shape[2:] |
|
) |
|
.permute(0, 2, 1, 3, 4) |
|
) |
|
|
|
video = video.float() |
|
return video |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature( |
|
self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
lvd_gligen_phrases, |
|
lvd_gligen_boxes, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
num_frames=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError( |
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError( |
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if lvd_gligen_boxes: |
|
if len(lvd_gligen_phrases) != num_frames or len(lvd_gligen_boxes) != num_frames: |
|
raise ValueError( |
|
"length of `lvd_gligen_phrases` and `lvd_gligen_boxes` has to be same and match `num_frames`, but" |
|
f" got: `lvd_gligen_phrases` {len(lvd_gligen_phrases)}, `lvd_gligen_boxes` {len(lvd_gligen_boxes)}, `num_frames` {num_frames}" |
|
) |
|
else: |
|
for frame_index, (lvd_gligen_phrases_frame, lvd_gligen_boxes_frame) in enumerate(zip(lvd_gligen_phrases, lvd_gligen_boxes)): |
|
if len(lvd_gligen_phrases_frame) != len(lvd_gligen_boxes_frame): |
|
raise ValueError( |
|
"length of `lvd_gligen_phrases` and `lvd_gligen_boxes` has to be same, but" |
|
f" got: `lvd_gligen_phrases` {len(lvd_gligen_phrases_frame)} != `lvd_gligen_boxes` {len(lvd_gligen_boxes_frame)} at frame {frame_index}" |
|
) |
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def enable_fuser(self, enabled=True): |
|
for module in self.unet.modules(): |
|
if type(module) is GatedSelfAttentionDense: |
|
module.enabled = enabled |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_frames: int = 16, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 9.0, |
|
lvd_gligen_scheduled_sampling_beta: float = 0.3, |
|
lvd_gligen_phrases: List[List[str]] = None, |
|
lvd_gligen_boxes: List[List[List[float]]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, |
|
List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "np", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[ |
|
int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated video. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated video. |
|
num_frames (`int`, *optional*, defaults to 16): |
|
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds |
|
amounts to 2 seconds of video. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
lvd_gligen_phrases (`List[str]`): |
|
The phrases to guide what to include in each of the regions defined by the corresponding |
|
`lvd_gligen_boxes`. There should only be one phrase per bounding box. |
|
lvd_gligen_boxes (`List[List[float]]`): |
|
The bounding boxes that identify rectangular regions of the image that are going to be filled with the |
|
content described by the corresponding `lvd_gligen_phrases`. Each rectangular box is defined as a |
|
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1]. |
|
lvd_gligen_scheduled_sampling_beta (`float`, defaults to 0.3): |
|
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image |
|
Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for |
|
scheduled sampling during inference for improved quality and controllability. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape |
|
`(batch_size, num_channel, num_frames, height, width)`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"np"`): |
|
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead |
|
of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
num_images_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, lvd_gligen_phrases, |
|
lvd_gligen_boxes, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get( |
|
"scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
if lvd_gligen_boxes: |
|
max_objs = 30 |
|
boxes_all, text_embeddings_all, masks_all = [], [], [] |
|
for lvd_gligen_phrases_frame, lvd_gligen_boxes_frame in zip(lvd_gligen_phrases, lvd_gligen_boxes): |
|
if len(lvd_gligen_boxes_frame) > max_objs: |
|
warnings.warn( |
|
f"More than {max_objs} objects found. Only first {max_objs} objects will be processed.", |
|
FutureWarning, |
|
) |
|
lvd_gligen_phrases_frame = lvd_gligen_phrases_frame[:max_objs] |
|
lvd_gligen_boxes_frame = lvd_gligen_boxes_frame[:max_objs] |
|
|
|
n_objs = len(lvd_gligen_boxes_frame) |
|
|
|
if n_objs: |
|
|
|
|
|
tokenizer_inputs = self.tokenizer( |
|
lvd_gligen_phrases_frame, padding=True, return_tensors="pt").to(device) |
|
|
|
|
|
_text_embeddings = self.text_encoder( |
|
**tokenizer_inputs).pooler_output |
|
|
|
|
|
|
|
boxes = torch.zeros(max_objs, 4, device=device, |
|
dtype=self.text_encoder.dtype) |
|
if n_objs: |
|
boxes[:n_objs] = torch.tensor(lvd_gligen_boxes_frame) |
|
text_embeddings = torch.zeros( |
|
max_objs, self.unet.cross_attention_dim, device=device, dtype=self.text_encoder.dtype |
|
) |
|
if n_objs: |
|
text_embeddings[:n_objs] = _text_embeddings |
|
|
|
masks = torch.zeros(max_objs, device=device, |
|
dtype=self.text_encoder.dtype) |
|
masks[:n_objs] = 1 |
|
|
|
repeat_batch = batch_size * num_images_per_prompt |
|
boxes = boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() |
|
text_embeddings = text_embeddings.unsqueeze( |
|
0).expand(repeat_batch, -1, -1).clone() |
|
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() |
|
if do_classifier_free_guidance: |
|
repeat_batch = repeat_batch * 2 |
|
boxes = torch.cat([boxes] * 2) |
|
text_embeddings = torch.cat([text_embeddings] * 2) |
|
masks = torch.cat([masks] * 2) |
|
masks[: repeat_batch // 2] = 0 |
|
|
|
boxes_all.append(boxes) |
|
text_embeddings_all.append(text_embeddings) |
|
masks_all.append(masks) |
|
|
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
|
|
boxes_all = torch.stack(boxes_all, dim=1).flatten(0, 1) |
|
text_embeddings_all = torch.stack( |
|
text_embeddings_all, dim=1).flatten(0, 1) |
|
masks_all = torch.stack(masks_all, dim=1).flatten(0, 1) |
|
cross_attention_kwargs["gligen"] = { |
|
"boxes": boxes_all, "positive_embeddings": text_embeddings_all, "masks": masks_all} |
|
|
|
num_grounding_steps = int( |
|
lvd_gligen_scheduled_sampling_beta * len(timesteps)) |
|
self.enable_fuser(True) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - \ |
|
num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == num_grounding_steps: |
|
self.enable_fuser(False) |
|
|
|
assert latents.shape[1] == 4, f"latent channel mismatch: {latents.shape}" |
|
|
|
|
|
latent_model_input = torch.cat( |
|
[latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * \ |
|
(noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
bsz, channel, frames, width, height = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape( |
|
bsz * frames, channel, width, height) |
|
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape( |
|
bsz * frames, channel, width, height) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = latents[None, :].reshape( |
|
bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if output_type == "latent": |
|
return TextToVideoSDPipelineOutput(frames=latents) |
|
|
|
video_tensor = self.decode_latents(latents) |
|
|
|
if output_type == "pt": |
|
video = video_tensor |
|
else: |
|
video = tensor2vid(video_tensor) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return TextToVideoSDPipelineOutput(frames=video) |
|
|