End of training
Browse files
README.md
CHANGED
@@ -8,9 +8,22 @@ tags:
|
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
- lord-reso/inbrowser-proctor-dataset
|
|
|
|
|
11 |
model-index:
|
12 |
- name: Whisper-Small-Inbrowser-Proctor
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -20,13 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Inbrowser Procotor Dataset dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- eval_runtime: 53.0859
|
26 |
-
- eval_samples_per_second: 1.319
|
27 |
-
- eval_steps_per_second: 0.17
|
28 |
-
- epoch: 8.9286
|
29 |
-
- step: 250
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -46,15 +54,31 @@ More information needed
|
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
- learning_rate: 5e-06
|
49 |
-
- train_batch_size:
|
50 |
- eval_batch_size: 8
|
51 |
- seed: 42
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
-
- lr_scheduler_warmup_steps:
|
55 |
-
- training_steps:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
### Framework versions
|
59 |
|
60 |
- Transformers 4.44.2
|
|
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
- lord-reso/inbrowser-proctor-dataset
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
model-index:
|
14 |
- name: Whisper-Small-Inbrowser-Proctor
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Inbrowser Procotor Dataset
|
21 |
+
type: lord-reso/inbrowser-proctor-dataset
|
22 |
+
args: 'config: en, split: test'
|
23 |
+
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 17.075501752150366
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Inbrowser Procotor Dataset dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3099
|
37 |
+
- Wer: 17.0755
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
- learning_rate: 5e-06
|
57 |
+
- train_batch_size: 8
|
58 |
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 25
|
63 |
+
- training_steps: 250
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
70 |
+
| 0.3461 | 0.4545 | 25 | 0.4545 | 26.0433 |
|
71 |
+
| 0.1902 | 0.9091 | 50 | 0.3309 | 17.4419 |
|
72 |
+
| 0.1184 | 1.3636 | 75 | 0.3120 | 14.6543 |
|
73 |
+
| 0.0944 | 1.8182 | 100 | 0.3066 | 16.7251 |
|
74 |
+
| 0.0632 | 2.2727 | 125 | 0.3046 | 14.8455 |
|
75 |
+
| 0.0688 | 2.7273 | 150 | 0.3060 | 14.8933 |
|
76 |
+
| 0.0479 | 3.1818 | 175 | 0.3063 | 17.1074 |
|
77 |
+
| 0.0515 | 3.6364 | 200 | 0.3081 | 15.4986 |
|
78 |
+
| 0.0296 | 4.0909 | 225 | 0.3096 | 17.2507 |
|
79 |
+
| 0.0348 | 4.5455 | 250 | 0.3099 | 17.0755 |
|
80 |
+
|
81 |
+
|
82 |
### Framework versions
|
83 |
|
84 |
- Transformers 4.44.2
|