--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - lord-reso/inbrowser-proctor-dataset metrics: - wer model-index: - name: Whisper-Small-Inbrowser-Proctor results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Inbrowser Procotor Dataset type: lord-reso/inbrowser-proctor-dataset args: 'config: en, split: test' metrics: - name: Wer type: wer value: 17.075501752150366 --- # Whisper-Small-Inbrowser-Proctor This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3099 - Wer: 17.0755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3461 | 0.4545 | 25 | 0.4545 | 26.0433 | | 0.1902 | 0.9091 | 50 | 0.3309 | 17.4419 | | 0.1184 | 1.3636 | 75 | 0.3120 | 14.6543 | | 0.0944 | 1.8182 | 100 | 0.3066 | 16.7251 | | 0.0632 | 2.2727 | 125 | 0.3046 | 14.8455 | | 0.0688 | 2.7273 | 150 | 0.3060 | 14.8933 | | 0.0479 | 3.1818 | 175 | 0.3063 | 17.1074 | | 0.0515 | 3.6364 | 200 | 0.3081 | 15.4986 | | 0.0296 | 4.0909 | 225 | 0.3096 | 17.2507 | | 0.0348 | 4.5455 | 250 | 0.3099 | 17.0755 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1