--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: MoE-leaf-disease-convnextv2-base-1k-224 results: [] --- # MoE-leaf-disease-convnextv2-base-1k-224 This model is a fine-tuned version of [](https://huggingface.co/) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4329 - Accuracy: 0.8668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 800 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4831 | 0.99 | 24 | 0.5000 | 0.8607 | | 0.3545 | 1.98 | 48 | 0.4135 | 0.8696 | | 0.3388 | 2.97 | 72 | 0.4527 | 0.8654 | | 0.3378 | 4.0 | 97 | 0.4225 | 0.8706 | | 0.3372 | 4.99 | 121 | 0.4032 | 0.8654 | | 0.326 | 5.98 | 145 | 0.4222 | 0.8654 | | 0.3437 | 6.97 | 169 | 0.4231 | 0.8640 | | 0.3157 | 8.0 | 194 | 0.3980 | 0.8720 | | 0.3193 | 8.99 | 218 | 0.4001 | 0.8682 | | 0.3027 | 9.98 | 242 | 0.4163 | 0.8650 | | 0.2933 | 10.97 | 266 | 0.4105 | 0.8715 | | 0.3041 | 12.0 | 291 | 0.4004 | 0.8729 | | 0.2845 | 12.99 | 315 | 0.4020 | 0.8720 | | 0.2845 | 13.98 | 339 | 0.4223 | 0.8715 | | 0.2797 | 14.97 | 363 | 0.4089 | 0.8678 | | 0.295 | 16.0 | 388 | 0.4162 | 0.8701 | | 0.2767 | 16.99 | 412 | 0.4369 | 0.8678 | | 0.2692 | 17.98 | 436 | 0.4292 | 0.8678 | | 0.2543 | 18.97 | 460 | 0.4328 | 0.8659 | | 0.2743 | 19.79 | 480 | 0.4329 | 0.8668 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1