--- license: apache-2.0 base_model: facebook/convnextv2-base-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8841121495327103 --- # convnextv2-base-1k-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3624 - Accuracy: 0.8841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 360 - eval_batch_size: 360 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1440 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.5825 | 0.96 | 13 | 2.5252 | 0.4874 | | 2.4869 | 2.0 | 27 | 1.0172 | 0.6388 | | 0.7793 | 2.96 | 40 | 0.6048 | 0.7925 | | 0.5807 | 4.0 | 54 | 0.4873 | 0.8327 | | 0.5079 | 4.96 | 67 | 0.4330 | 0.8514 | | 0.4363 | 6.0 | 81 | 0.4140 | 0.8668 | | 0.4118 | 6.96 | 94 | 0.3962 | 0.8743 | | 0.3918 | 8.0 | 108 | 0.3924 | 0.8748 | | 0.3669 | 8.96 | 121 | 0.3816 | 0.8822 | | 0.3687 | 10.0 | 135 | 0.3784 | 0.8776 | | 0.3645 | 10.96 | 148 | 0.3684 | 0.8846 | | 0.349 | 12.0 | 162 | 0.3706 | 0.8804 | | 0.3341 | 12.96 | 175 | 0.3678 | 0.8813 | | 0.3304 | 14.0 | 189 | 0.3618 | 0.8794 | | 0.3318 | 14.96 | 202 | 0.3677 | 0.8808 | | 0.3178 | 16.0 | 216 | 0.3626 | 0.8818 | | 0.3209 | 16.96 | 229 | 0.3606 | 0.8822 | | 0.3129 | 18.0 | 243 | 0.3615 | 0.8836 | | 0.3013 | 18.96 | 256 | 0.3627 | 0.8841 | | 0.3046 | 19.26 | 260 | 0.3624 | 0.8841 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1