--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - arrow metrics: - accuracy model-index: - name: audio_consistency results: - task: name: Audio Classification type: audio-classification dataset: name: arrow type: arrow config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3625798954096456 --- # audio_consistency This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 1.0924 - Accuracy: 0.3626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 216 | 1.0926 | 0.3626 | | No log | 2.0 | 432 | 1.0925 | 0.3626 | | 1.0933 | 3.0 | 648 | 1.0924 | 0.3626 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1