--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: audio_prosodic0.0.3 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.35680566483084186 --- # audio_prosodic0.0.3 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0954 - Accuracy: 0.3568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 159 | 1.0983 | 0.3544 | | No log | 2.0 | 318 | 1.0952 | 0.3544 | | No log | 3.0 | 477 | 1.0954 | 0.3568 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1