Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
---
|
4 |
+
An vit classifier for handling noise image like this
|
5 |
+
|
6 |
+
![0b36d3c4-da8d-4fb1-bc14-a948af35f02e.jpg](https://cdn-uploads.huggingface.co/production/uploads/63891deed68e37abd59e883f/aOspZVn_4W-hUFKt5JNUj.jpeg)
|
7 |
+
|
8 |
+
It has limitation inbetween clear and noise
|
9 |
+
|
10 |
+
```
|
11 |
+
from datasets import load_dataset
|
12 |
+
from PIL import Image
|
13 |
+
from transformers import ViTImageProcessor, ViTForImageClassification, TrainingArguments, Trainer
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
from datasets import load_metric
|
17 |
+
import os
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
model_name_or_path = 'lrzjason/noise-classifier'
|
21 |
+
image_processor = ViTImageProcessor.from_pretrained(model_name_or_path)
|
22 |
+
model = ViTForImageClassification.from_pretrained(model_name_or_path)
|
23 |
+
|
24 |
+
input_dir = ''
|
25 |
+
file = 'b5b457f4-5b52-4d68-be1b-9a2f557465f6.jpg'
|
26 |
+
image = Image.open(os.path.join(input_dir, file))
|
27 |
+
|
28 |
+
inputs = image_processor(image, return_tensors="pt")
|
29 |
+
with torch.no_grad():
|
30 |
+
logits = model(**inputs).logits
|
31 |
+
|
32 |
+
# model predicts one of the 1000 ImageNet classes
|
33 |
+
predicted_label = logits.argmax(-1).item()
|
34 |
+
```
|