Safetensors
vmistral
custom_code
File size: 30,297 Bytes
2fed580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from dataclasses import dataclass
import inspect
import warnings
from typing import List, Optional, Tuple, Union
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.utils import (
    is_flash_attn_2_available
)
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput

from .configuration_vmistral import VMistralConfig
from .vision import SiglipVisionModel
from .modeling_vmistral import *
from .generation_utils import TreeBuilder, WebGenerationMixin
import time


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
    
@dataclass
class WebLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    html_tree: TreeBuilder = None


class WebAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.qk_layer_norms = qk_layer_norms
        if self.qk_layer_norms:
            self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
            self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)

        self.rotary_emb = MistralRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )
        self.attention_dropout = config.attention_dropout

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        web_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
                " `attention_mask` instead.`"
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = (
            self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        )
        value_states = (
            self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        )

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        if self.qk_layer_norms:
            query_states = self.q_layer_norm(query_states)
            key_states = self.k_layer_norm(key_states)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        web_attention_range = self.config.web_attention_range

        def split_tensor(tensor):
            if int(web_attention_range) == 8:
                return
            fraction = float(web_attention_range) / 8
            split_size_2 = int(self.num_heads * fraction)
            split_size_1 = self.num_heads - split_size_2
            return torch.split(tensor, [split_size_1, split_size_2], dim=1)
    
        if int(web_attention_range) != 8:
            query_states_1, query_states_2 = split_tensor(query_states)
            key_states_1, key_states_2 = split_tensor(key_states)
            value_states_1, value_states_2 = split_tensor(value_states)

            with torch.backends.cuda.sdp_kernel(
                enable_flash=False, enable_math=True, enable_mem_efficient=False
            ):
                attn_output_1 = F.scaled_dot_product_attention(query_states_1, key_states_1, value_states_1, attn_mask=attention_mask)
                
                attn_output_2 = F.scaled_dot_product_attention(query_states_2, key_states_2, value_states_2, attn_mask=web_attention_mask)
            attn_output = torch.cat([attn_output_1, attn_output_2], dim=1)
        else:
            with torch.backends.cuda.sdp_kernel(
                enable_flash=False, enable_math=True, enable_mem_efficient=False
            ):
                attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask=web_attention_mask)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )
        
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value
    

class WebFlashAttention2(WebAttention):
    """
    Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """
        
class WebDecoderLayer(nn.Module):
    def __init__(self, config: VMistralConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = (
            WebAttention(config=config)
            if not getattr(config, "_flash_attn_2_enabled", False)
            else WebFlashAttention2(config)
        )
        self.mlp = MistralMLP(config)
        self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        web_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
                " `attention_mask` instead.`"
            )
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            web_attention_mask=web_attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs

class WebPreTrainedModel(PreTrainedModel):
    config_class = VMistralConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["WebDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_sdpa = False
    

class WebModel(WebPreTrainedModel, VMistralModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]

    Args:
        config: VMistralConfig
    """

    def __init__(self, config: VMistralConfig, vision_model=None):
        super().__init__(config)
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.sliding_window = config.sliding_window

        self.embed_tokens = DecoupledEmbedding(
            num_embeddings=config.vocab_size,
            num_additional_embeddings=config.additional_vocab_size,
            embedding_dim=config.hidden_size,
            partially_freeze=config.freeze_text_layers,
            padding_idx=self.padding_idx,
        )

        # Load an uninitialized model and later in from_pretrained will load the pre-trained model -
        # this solves the losing of weights in `from_pretrained` on the main model
        self.vision_model = SiglipVisionModel(config.vision_config)

        # Dim projection - projecting from the vision dim to the text dim
        self.modality_projection = ModalityProjection(
            embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size
        )

        # Perceiver Resampler
        if config.use_resampler:
            self.perceiver_resampler = PerceiverResampler(
                config.hidden_size,
                config.perceiver_config.resampler_depth,
                config.perceiver_config.resampler_n_heads,
                config.perceiver_config.resampler_head_dim,
                config.perceiver_config.resampler_n_latents,
                config.perceiver_config.qk_layer_norms_perceiver,
            )

        if config.use_resampler:
            self.image_seq_len = config.perceiver_config.resampler_n_latents
        else:
            self.image_seq_len = (
                config.vision_config.image_size // config.vision_config.patch_size
            ) ** 2  # TODO: pretty sure that does not work for CLIP models since there is the CLS token
        self.image_token_id = self.config.image_token_id

        self.layers = nn.ModuleList([WebDecoderLayer(config) for _ in range(config.num_hidden_layers)])

        self.gradient_checkpointing = False

        self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

        self.freeze_relevant_params(config)
        
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        web_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_hidden_states: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, VMistralBaseModelOutputWithPast]:
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # START VISUAL INPUTS INTEGRATION
        if pixel_values is not None and image_hidden_states is not None:
            raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
        elif pixel_values is not None:
            pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device)  # fp16 compatibility
            batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
            
            # this change allows multi image in a single batch
            pixel_values = pixel_values.contiguous().view(batch_size, num_images, *pixel_values.shape[2:])
            # # Remove padding images - padding images are full 0.
            # real_images_inds = pixel_values.sum(dim=(-1, -2, -3)) != 0.0
            # print(real_images_inds)
            # pixel_values = pixel_values[real_images_inds]
            # # Get sequence from the vision encoder
            # print("shape_pixel", pixel_values.shape)
            image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state

            # Modality projection
            image_hidden_states = self.modality_projection(image_hidden_states)

            if self.config.use_resampler:
                image_hidden_states = self.perceiver_resampler(image_hidden_states)
        elif image_hidden_states is not None:
            image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)

        if past_key_values is None:
            # When we generate, we don't want to replace the potential image_token_id that we generated by images
            # that simply don't exist
            new_inp = self.inputs_merger(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                image_hidden_states=image_hidden_states,
            )
            inputs_embeds = new_inp["inputs_embeds"]

        # Can do add some token types embeddings here (image token vs text token)
        # something like inputs_embeds += self.token_types(token_types)

        # embed positions
        if (
            attention_mask is not None
            and hasattr(self.config, "_flash_attn_2_enabled")
            and self.config._flash_attn_2_enabled
            and past_key_values is not None
        ):
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )
        # We did not implement our model using Flash attn 2
        self.config._flash_attn_2_enabled = False
        if not getattr(self.config, "_flash_attn_2_enabled", False):
            # 2d mask is passed through the layers
            # attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
            web_attention_mask = web_attention_mask.unsqueeze(1)
            inverted_mask = 1.0 - web_attention_mask.to(inputs_embeds.dtype)
            web_attention_mask = inverted_mask.masked_fill(
                inverted_mask.to(torch.bool), -1.e32
            )
            if input_ids is not None:
                bsz, L = input_ids.size()[:2]
                web_attention_mask = web_attention_mask[:, :, -L:, :]
        else:
            print("Exiting, wrong branch")
            exit()
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
                sliding_window=self.config.sliding_window,
            )
            attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    web_attention_mask,
                    position_ids,
                    past_key_value,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    web_attention_mask=web_attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
                if v is not None
            )
        return VMistralBaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            image_hidden_states=image_hidden_states,
        )
        
class WebForVisionText2Text(WebPreTrainedModel, WebGenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config, vision_model=None):
        super().__init__(config)
        self.model = WebModel(config, vision_model=vision_model)
        self.image_token_id = self.config.image_token_id
        self.lm_head = DecoupledLinear(
            in_features=config.hidden_size,
            out_features=config.vocab_size,
            out_additional_features=config.additional_vocab_size,
            bias=False,
            partially_freeze=config.freeze_lm_head,
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        web_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_hidden_states: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        html_tree = None,
    ) -> Union[Tuple, WebLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            web_attention_mask=web_attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            pixel_values=pixel_values,
            image_hidden_states=image_hidden_states,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:].to(logits.device)
                shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output
        # print(f"forward takes: {time.time()-start_time}")

        return WebLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
            html_tree = html_tree
        )
        
    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs
    ):
        image_hidden_states = kwargs.pop("image_hidden_states", None)
        if image_hidden_states is not None:
            kwargs["pixel_values"] = None
            
        inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs)
        web_attention_mask, html_tree = None, kwargs.get("html_tree")
        
        if html_tree.web_attention_mask is None :
            attention_mask = inputs["attention_mask"]
            web_attention_mask = torch.tril(torch.ones((attention_mask.shape[-1], attention_mask.shape[-1]), dtype = attention_mask.dtype)).unsqueeze(0)
            html_tree.web_attention_mask = web_attention_mask
        else:
            html_tree = kwargs.get("html_tree")
            input_ids = inputs["input_ids"]
            tokenizer = html_tree.tokenizer
            cur_decoded_token = tokenizer.convert_tokens_to_string([" "]+tokenizer.convert_ids_to_tokens(input_ids[:,-1]))
            web_attn_range = html_tree.update_buffer([cur_decoded_token])
            bsz, L = html_tree.web_attention_mask.size()[:2]
            web_attention_mask = torch.zeros((bsz, L + 1, L + 1)).type_as(html_tree.web_attention_mask)
            web_attention_mask[:, :L, :L] = html_tree.web_attention_mask
            web_attn_range = torch.tensor(list(range(67))+[i + 67 for i in web_attn_range], dtype = web_attention_mask.dtype)
            web_attention_mask[:, -1, web_attn_range] = 1
            html_tree.web_attention_mask = web_attention_mask
            if html_tree.input_ids is None :
                html_tree.input_ids = input_ids
            else:
                html_tree.input_ids = torch.cat((html_tree.input_ids, input_ids), dim = 1)
        
        unwanted_kwargs = ["token_type_ids"]
        inputs.update({
            "web_attention_mask": web_attention_mask.to(inputs['attention_mask'].device),
            "html_tree": html_tree,
        })
        for kwarg in unwanted_kwargs:
            inputs.pop(kwarg, None)

        return inputs