|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch VMistral model.""" |
|
from dataclasses import dataclass |
|
import inspect |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
replace_return_docstrings, |
|
) |
|
|
|
from einops import rearrange, repeat |
|
from transformers import PreTrainedModel |
|
from transformers.utils import logging |
|
from transformers.modeling_outputs import ModelOutput |
|
|
|
from .configuration_vmistral import VMistralConfig |
|
from .vision import SiglipVisionModel |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "VMistralConfig" |
|
|
|
VMistral_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"HuggingFaceM4/VLM_WebSight_finetuned" |
|
] |
|
|
|
@dataclass |
|
class VMistralBaseModelOutputWithPast(ModelOutput): |
|
""" |
|
Base class for VMistral model's outputs that may also contain a past key/values (to speed up sequential decoding). |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
|
|
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, |
|
hidden_size)` is output. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class VMistralCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for VMistral causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
def expand_inputs_for_generation( |
|
input_ids, |
|
expand_size=1, |
|
is_encoder_decoder=False, |
|
attention_mask=None, |
|
encoder_outputs=None, |
|
**model_kwargs, |
|
): |
|
expanded_return_idx = ( |
|
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) |
|
) |
|
input_ids = input_ids.index_select(0, expanded_return_idx) |
|
model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None) |
|
model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None) |
|
|
|
if "token_type_ids" in model_kwargs: |
|
token_type_ids = model_kwargs["token_type_ids"] |
|
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx) |
|
|
|
if attention_mask is not None: |
|
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx) |
|
|
|
if model_kwargs["pixel_values"] is not None: |
|
model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx) |
|
|
|
elif model_kwargs["image_hidden_states"] is not None: |
|
model_kwargs["image_hidden_states"] = model_kwargs["image_hidden_states"].index_select(0, expanded_return_idx) |
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
def update_model_kwargs_for_generation(outputs, model_kwargs): |
|
|
|
if "past_key_values" in outputs: |
|
model_kwargs["past_key_values"] = outputs.past_key_values |
|
else: |
|
model_kwargs["past_key_values"] = None |
|
|
|
|
|
if "token_type_ids" in model_kwargs: |
|
token_type_ids = model_kwargs["token_type_ids"] |
|
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) |
|
|
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
|
|
|
|
model_kwargs["image_hidden_states"] = outputs.image_hidden_states |
|
|
|
return model_kwargs |
|
|
|
|
|
def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
pixel_values = kwargs.get("pixel_values", None) |
|
image_hidden_states = kwargs.get("image_hidden_states", None) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
"pixel_values": pixel_values, |
|
"image_hidden_states": image_hidden_states, |
|
} |
|
|
|
|
|
def freeze_model(model, module_exceptions=[]): |
|
mapping = { |
|
"LayerNorm": nn.LayerNorm, |
|
"Linear": nn.Linear, |
|
"Embedding": nn.Embedding, |
|
} |
|
module_exceptions_mapped = [mapping[m] for m in module_exceptions] |
|
for module in model.modules(): |
|
if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]): |
|
module.requires_grad_(True) |
|
else: |
|
module.requires_grad_(False) |
|
return model |
|
|
|
|
|
class DecoupledEmbedding(nn.Embedding): |
|
|
|
""" |
|
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. |
|
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained. |
|
If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_embeddings, |
|
num_additional_embeddings, |
|
embedding_dim, |
|
partially_freeze=False, |
|
device=None, |
|
dtype=None, |
|
padding_idx=None, |
|
**kwargs, |
|
) -> None: |
|
""" |
|
num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`. |
|
partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen. |
|
|
|
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these. |
|
""" |
|
if padding_idx is not None and padding_idx > num_embeddings: |
|
raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}") |
|
super().__init__( |
|
num_embeddings=num_embeddings, |
|
embedding_dim=embedding_dim, |
|
device=device, |
|
dtype=dtype, |
|
padding_idx=padding_idx, |
|
**kwargs, |
|
) |
|
self.num_embeddings = num_embeddings |
|
self.padding_idx = padding_idx |
|
self.num_additional_embeddings = num_additional_embeddings |
|
self.partially_freeze = partially_freeze |
|
|
|
if partially_freeze: |
|
self.weight.requires_grad_(False) |
|
|
|
if self.num_additional_embeddings > 0: |
|
self.additional_embedding = nn.Embedding( |
|
num_embeddings=self.num_additional_embeddings, |
|
embedding_dim=embedding_dim, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def forward(self, input_ids): |
|
""" |
|
we have 2 embeddings, with different indices - one pretrained self.weight and another |
|
self.additional_embedding.weight that is being trained. |
|
|
|
in order to make a lookup of the input ids, we: |
|
1. find out the indices of the entries belonging to the 2nd embedding |
|
2. extract those values while subtracting the size of the first embedding (num_embeddings), |
|
since the 2nd embedding starts from 0 and not num_embeddings |
|
3. perform the 2nd embedding lookup |
|
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index |
|
5. perform the 1st embedding lookup |
|
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup |
|
|
|
note: for the 1st embedding lookup we could have looked up only the low indices and not do |
|
the padding, but then we have to create a new tensor and populate it with 2 tensors that are |
|
spread out across various indices - i.e. not a simple concat - I haven't benchmarked the |
|
complex case if it's any faster, given that seqlens are usually relatively short it's |
|
probably not faster or if faster not by much - but might be a good idea to measure. |
|
|
|
""" |
|
if self.num_additional_embeddings == 0: |
|
return self.additional_embedding(input_ids) |
|
|
|
|
|
input_ids = input_ids.clone() |
|
additional_vocab_indices = torch.where(input_ids >= self.num_embeddings) |
|
input_ids_additional_vocab = input_ids[additional_vocab_indices] |
|
additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings) |
|
|
|
|
|
input_ids[additional_vocab_indices] = 0 |
|
full_vector = F.embedding(input_ids, self.weight) |
|
|
|
|
|
full_vector[additional_vocab_indices] = additional_embeddings |
|
|
|
return full_vector |
|
|
|
def extra_repr(self) -> str: |
|
return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format( |
|
self.num_embeddings, |
|
self.num_additional_embeddings, |
|
self.embedding_dim, |
|
self.partially_freeze, |
|
) |
|
|
|
|
|
class DecoupledLinear(nn.Linear): |
|
|
|
""" |
|
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. |
|
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained. |
|
If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
out_additional_features: int = 0, |
|
bias: bool = True, |
|
partially_freeze: bool = True, |
|
device=None, |
|
dtype=None, |
|
) -> None: |
|
""" |
|
out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`. |
|
partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear. |
|
""" |
|
super().__init__(in_features, out_features, bias, device, dtype) |
|
self.out_additional_features = out_additional_features |
|
self.partially_freeze = partially_freeze |
|
|
|
self.in_features = in_features |
|
self.out_features = out_features |
|
|
|
if partially_freeze: |
|
self.weight.requires_grad_(False) |
|
if bias: |
|
self.bias.requires_grad_(False) |
|
|
|
if out_additional_features > 0: |
|
self.additional_fc = nn.Linear( |
|
in_features=in_features, |
|
out_features=out_additional_features, |
|
bias=bias, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
output = F.linear(input, self.weight, self.bias) |
|
|
|
if self.out_additional_features > 0: |
|
additional_features = self.additional_fc(input) |
|
output = torch.cat((output, additional_features), -1) |
|
|
|
return output |
|
|
|
def extra_repr(self) -> str: |
|
"""Overwriting `nn.Linear.extra_repr` to include new parameters.""" |
|
return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( |
|
self.in_features, |
|
self.out_features, |
|
self.out_additional_features, |
|
self.bias is not None, |
|
self.partially_freeze, |
|
) |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def __init__(self, embed_dim) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.fc2 = nn.Linear(embed_dim, embed_dim, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x_1 = self.fc1(x) |
|
x_1 = torch.mul(x_1, torch.sigmoid(x_1)) |
|
x_2 = self.fc2(x) |
|
x = torch.mul(x_1, x_2) |
|
return x |
|
|
|
|
|
class ModalityProjection(nn.Module): |
|
def __init__(self, embed_dim_in, embed_dim_out) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(embed_dim_in, embed_dim_out, bias=False) |
|
self.act = SwiGLU(embed_dim_out) |
|
self.fc2 = nn.Linear(embed_dim_out, embed_dim_out, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class PerceiverResampler(nn.Module): |
|
def __init__( |
|
self, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, qk_layer_norms: bool |
|
) -> None: |
|
""" |
|
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or |
|
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then |
|
returns a Tensor of shape [bsz, n_latents, embed_dim]. |
|
:param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of |
|
latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet |
|
pool dim, and so on. |
|
:param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). |
|
:param n_heads: Number of heads in each Transformer block (for multi-headed self-attention). |
|
:param head_dim: Dimensionality of each head projection in the Transformer block. |
|
:param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). |
|
""" |
|
super().__init__() |
|
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents |
|
self.qk_layer_norms = qk_layer_norms |
|
|
|
|
|
self.latents = nn.Parameter(torch.ones(self.n_latents, self.embed_dim)) |
|
|
|
self.intermediate_dim = self.embed_dim * 4 |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms), |
|
MLP(self.embed_dim, self.intermediate_dim), |
|
] |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
self.layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
def forward(self, context: torch.Tensor) -> torch.Tensor: |
|
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" |
|
latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) |
|
|
|
|
|
for attn, ff in self.blocks: |
|
latents = attn(context, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
return self.layer_norm(latents) |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None: |
|
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" |
|
super().__init__() |
|
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim |
|
self.qk_layer_norms = qk_layer_norms |
|
|
|
self.context_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.latents_layer_norm = nn.LayerNorm(self.embed_dim) |
|
if self.qk_layer_norms: |
|
self.q_layer_norm = nn.LayerNorm(self.head_dim) |
|
self.k_layer_norm = nn.LayerNorm(self.head_dim) |
|
|
|
self.qk_scale = self.head_dim**-0.5 |
|
|
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) |
|
|
|
self.output_proj = nn.Linear(self.n_heads * self.head_dim, self.embed_dim, bias=False) |
|
|
|
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! |
|
:param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample. |
|
:param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to. |
|
:return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context. |
|
""" |
|
context = self.context_layer_norm(context) |
|
latents = self.latents_layer_norm(latents) |
|
|
|
|
|
|
|
q = self.q_proj(latents) |
|
k = self.k_proj(torch.cat([context, latents], dim=-2)) |
|
v = self.v_proj(torch.cat([context, latents], dim=-2)) |
|
|
|
|
|
|
|
q, k, v = [rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) for x in (q, k, v)] |
|
if self.qk_layer_norms: |
|
q = self.q_layer_norm(q) |
|
k = self.k_layer_norm(k) |
|
|
|
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) |
|
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) |
|
attn = stabilized_scores.softmax(dim=-1) |
|
|
|
|
|
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) |
|
return self.output_proj( |
|
rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) |
|
) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, embed_dim, intermediate_size): |
|
"""Simple MLP block with intermediate_size and embedding size""" |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.ln = nn.LayerNorm(self.embed_dim) |
|
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False) |
|
self.act = nn.ReLU() |
|
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False) |
|
|
|
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: |
|
hidden_states = self.ln(hidden_states) |
|
hidden_states = self.fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class MistralRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
MistralRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class MistralRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class MistralMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class MistralAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.qk_layer_norms = qk_layer_norms |
|
if self.qk_layer_norms: |
|
self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
self.rotary_emb = MistralRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
self.attention_dropout = config.attention_dropout |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use" |
|
" `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = ( |
|
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
) |
|
value_states = ( |
|
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
if self.qk_layer_norms: |
|
query_states = self.q_layer_norm(query_states) |
|
key_states = self.k_layer_norm(key_states) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MistralFlashAttention2(MistralAttention): |
|
""" |
|
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
): |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use" |
|
" `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
use_sliding_windows = False |
|
|
|
|
|
|
|
|
|
|
|
_flash_supports_window_size = None |
|
|
|
if not _flash_supports_window_size: |
|
logger.warning_once( |
|
"The current flash attention version does not support sliding window attention, for a more memory" |
|
" efficient implementation make sure to upgrade flash-attn library." |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window: |
|
slicing_tokens = kv_seq_len - self.config.sliding_window |
|
|
|
past_key = past_key_value[0] |
|
past_value = past_key_value[1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1," |
|
f" head_dim`), got {past_key.shape}" |
|
) |
|
|
|
past_key_value = (past_key, past_value) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
|
|
if hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
"The input hidden states seems to be silently casted in float32, this might be related to the fact" |
|
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=use_sliding_windows, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool`, *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=self.is_causal, |
|
) |
|
else: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=self.is_causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if not use_sliding_windows: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=self.is_causal, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=self.is_causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
class MistralDecoderLayer(nn.Module): |
|
def __init__(self, config: VMistralConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = ( |
|
MistralAttention(config=config) |
|
) |
|
self.mlp = MistralMLP(config) |
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use" |
|
" `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
MISTRAL_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`VMistralConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class VMistralPreTrainedModel(PreTrainedModel): |
|
config_class = VMistralConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MistralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_sdpa = False |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
|
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MISTRAL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class VMistralModel(VMistralPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] |
|
|
|
Args: |
|
config: VMistralConfig |
|
""" |
|
|
|
def __init__(self, config: VMistralConfig, vision_model=None): |
|
super().__init__(config) |
|
self.config = config |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.sliding_window = config.sliding_window |
|
|
|
self.embed_tokens = DecoupledEmbedding( |
|
num_embeddings=config.vocab_size, |
|
num_additional_embeddings=config.additional_vocab_size, |
|
embedding_dim=config.hidden_size, |
|
partially_freeze=config.freeze_text_layers, |
|
padding_idx=self.padding_idx, |
|
) |
|
|
|
|
|
|
|
self.vision_model = SiglipVisionModel(config.vision_config) |
|
|
|
|
|
self.modality_projection = ModalityProjection( |
|
embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size |
|
) |
|
|
|
|
|
if config.use_resampler: |
|
self.perceiver_resampler = PerceiverResampler( |
|
config.hidden_size, |
|
config.perceiver_config.resampler_depth, |
|
config.perceiver_config.resampler_n_heads, |
|
config.perceiver_config.resampler_head_dim, |
|
config.perceiver_config.resampler_n_latents, |
|
config.perceiver_config.qk_layer_norms_perceiver, |
|
) |
|
|
|
if config.use_resampler: |
|
self.image_seq_len = config.perceiver_config.resampler_n_latents |
|
else: |
|
self.image_seq_len = ( |
|
config.vision_config.image_size // config.vision_config.patch_size |
|
) ** 2 |
|
self.image_token_id = self.config.image_token_id |
|
|
|
self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
self.freeze_relevant_params(config) |
|
|
|
def freeze_relevant_params(self, config=None): |
|
if config is None: |
|
config = self.config |
|
|
|
if config.freeze_text_layers: |
|
self.freeze_text_layers(config.freeze_text_module_exceptions) |
|
|
|
if config.freeze_vision_layers: |
|
freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) |
|
|
|
def freeze_text_layers(self, module_exceptions): |
|
for module in [self.layers, self.norm]: |
|
freeze_model(module, module_exceptions=module_exceptions) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def inputs_merger( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
image_hidden_states: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM. |
|
The merging happens as follows: |
|
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`. |
|
- We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space. |
|
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer. |
|
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM. |
|
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states. |
|
""" |
|
batch_size = input_ids.size(0) |
|
|
|
if inputs_embeds is not None: |
|
new_inputs_embeds = inputs_embeds.clone() |
|
|
|
if image_hidden_states is not None: |
|
vision_pipeline_output_seq_len = image_hidden_states.shape[1] |
|
vision_hidden_size = image_hidden_states.shape[2] |
|
|
|
num_images = (input_ids == self.image_token_id).sum(dim=-1) // self.image_seq_len |
|
cum_num_images = num_images.cumsum(dim=-1) |
|
for batch_idx in range(batch_size): |
|
|
|
example_num_images = num_images[batch_idx] |
|
|
|
start = 0 if batch_idx == 0 else cum_num_images[batch_idx - 1] |
|
end = cum_num_images[batch_idx] |
|
example_true_image_hidden_states = image_hidden_states[start:end] |
|
if ( |
|
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0] |
|
!= example_num_images * vision_pipeline_output_seq_len |
|
): |
|
raise ValueError( |
|
"new_inputs_embeds to replace has shape[0]:" |
|
f" {new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]} but" |
|
" should have shape[0]:" |
|
f" {example_num_images}*{vision_pipeline_output_seq_len}={example_num_images * vision_pipeline_output_seq_len} " |
|
) |
|
|
|
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id] = ( |
|
example_true_image_hidden_states.view( |
|
example_num_images * vision_pipeline_output_seq_len, |
|
vision_hidden_size, |
|
) |
|
) |
|
|
|
return_dict = {} |
|
if inputs_embeds is not None: |
|
return_dict["inputs_embeds"] = new_inputs_embeds |
|
|
|
return return_dict |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
image_hidden_states: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, VMistralBaseModelOutputWithPast]: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if pixel_values is not None and image_hidden_states is not None: |
|
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") |
|
elif pixel_values is not None: |
|
pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) |
|
batch_size, num_images = pixel_values.size(0), pixel_values.size(1) |
|
pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) |
|
|
|
real_images_inds = pixel_values.sum(dim=(-1, -2, -3)) != 0.0 |
|
pixel_values = pixel_values[real_images_inds] |
|
|
|
image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state |
|
|
|
|
|
image_hidden_states = self.modality_projection(image_hidden_states) |
|
|
|
if self.config.use_resampler: |
|
image_hidden_states = self.perceiver_resampler(image_hidden_states) |
|
elif image_hidden_states is not None: |
|
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device) |
|
|
|
if past_key_values is None: |
|
|
|
|
|
new_inp = self.inputs_merger( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
image_hidden_states=image_hidden_states, |
|
) |
|
inputs_embeds = new_inp["inputs_embeds"] |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
attention_mask is not None |
|
and hasattr(self.config, "_flash_attn_2_enabled") |
|
and self.config._flash_attn_2_enabled |
|
and past_key_values is not None |
|
): |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if getattr(self.config, "_flash_attn_2_enabled", False): |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_value, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states] |
|
if v is not None |
|
) |
|
return VMistralBaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
image_hidden_states=image_hidden_states, |
|
) |
|
|
|
|
|
class VMistralForVisionText2Text(VMistralPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config, vision_model=None): |
|
super().__init__(config) |
|
self.model = VMistralModel(config, vision_model=vision_model) |
|
self.image_token_id = self.config.image_token_id |
|
self.lm_head = DecoupledLinear( |
|
in_features=config.hidden_size, |
|
out_features=config.vocab_size, |
|
out_additional_features=config.additional_vocab_size, |
|
bias=False, |
|
partially_freeze=config.freeze_lm_head, |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def tie_weights(self): |
|
""" |
|
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. |
|
""" |
|
output_embeddings = self.get_output_embeddings() |
|
input_embeddings = self.get_input_embeddings() |
|
|
|
if getattr(self.config, "tie_word_embeddings", True): |
|
output_embeddings.weight = input_embeddings.weight |
|
if input_embeddings.num_additional_embeddings > 0: |
|
assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings |
|
output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight |
|
|
|
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): |
|
output_embeddings.out_features = input_embeddings.num_embeddings |
|
if hasattr(output_embeddings, "out_additional_features") and hasattr( |
|
input_embeddings, "num_additional_embeddings" |
|
): |
|
output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=VMistralCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
image_hidden_states: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, VMistralCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
pixel_values=pixel_values, |
|
image_hidden_states=image_hidden_states, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
|
|
if attention_mask is not None: |
|
shift_attention_mask = attention_mask[..., 1:].to(logits.device) |
|
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return VMistralCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=outputs.image_hidden_states, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
image_hidden_states = kwargs.pop("image_hidden_states", None) |
|
if image_hidden_states is not None: |
|
kwargs["pixel_values"] = None |
|
inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs) |
|
unwanted_kwargs = ["token_type_ids"] |
|
for kwarg in unwanted_kwargs: |
|
inputs.pop(kwarg, None) |
|
return inputs |
|
|
|
@staticmethod |
|
def _expand_inputs_for_generation( |
|
*args, |
|
**model_kwargs, |
|
): |
|
return expand_inputs_for_generation(*args, **model_kwargs) |
|
|
|
@staticmethod |
|
def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder): |
|
return update_model_kwargs_for_generation(outputs, model_kwargs) |
|
|
|
@staticmethod |
|
def _reorder_cache(past, beam_idx): |
|
reordered_past = () |
|
for layer_past in past: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|