--- license: bsd-3-clause-clear --- # WAFFLE: Multi-Modal Model for Automated Front-End Development We develope WAFFLE, a fine-tuning approach to train multi-modal LLM (MLLM) to generate HTML code from webpage screenshots or UI designs. WAFFLE uses a structure-aware attention mechanism to improve MLLMs' understanding of HTML's structure and a contrastive fine-tuning approach to align MLLMs' understanding of UI images and HTML code. Models fine-tuned with WAFFLE show up to 9.00 pp (percentage point) higher HTML match, 0.0982 higher CW-SSIM, 32.99 higher CLIP, and 27.12 pp higher LLEM on our new benchmark WebSight-Test and an existing benchmark Design2Code. ## Updates: * 10/24/2024: Our preprint avaiable at: [preprint](https://arxiv.org/abs/2410.18362) * 10/24/2024: Our code (keep maintaining) avaiable at: [code](https://github.com/lt-asset/Waffle) * 10/24/2024: Our fine-tuned Waffle_VLM_WebSight (7B), using DoRA, is released at: [lt-asset/Waffle_VLM_WebSight](https://huggingface.co/lt-asset/Waffle_VLM_WebSight) ## Dependency - peft 0.11.1 - transformers 4.41.1 - pytorch 2.3.0 - selenium - Python 3.10.14 - deepspeed 0.14.1 - datasets 2.19.1 - beautifulsoup4 4.12.3 - accelerate 0.30.1 ## Structure - `vlm_websight` contains the dataset class file, model class files, and training file for vlm_websight. - `eval_websight.py` is the inference file - `dataset.py` is the dataset class file - WebSight-Test is one of our test dataset ## Quick Start ```bash cd vlm_websight # generate HTML/CSS code for UI image --image_path, save the code to --html_path python quick_start.py --image_path ../WebSight-Test/test-495.png --html_path examples/example-495.html # render the HTML/CSS code in --html_path, and save the rendered image to --image_path python render_html.py --html_path examples/example-495.html --image_path examples/example-495.png ``` ## Citation ``` @misc{liang2024wafflemultimodalmodelautomated, title={WAFFLE: Multi-Modal Model for Automated Front-End Development}, author={Shanchao Liang and Nan Jiang and Shangshu Qian and Lin Tan}, year={2024}, eprint={2410.18362}, archivePrefix={arXiv}, primaryClass={cs.SE}, url={https://arxiv.org/abs/2410.18362}, } ```