--- license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window8-256 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swinv2-small-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8846732673267327 --- # swinv2-small-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.4063 - Accuracy: 0.8847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3521 | 1.0 | 592 | 0.7233 | 0.7967 | | 0.9887 | 2.0 | 1184 | 0.5211 | 0.8519 | | 0.845 | 3.0 | 1776 | 0.4063 | 0.8847 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3