File size: 40,489 Bytes
71d21a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
---
language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3560698
- loss:ModifiedMatryoshkaLoss
- loss:MSELoss
base_model: google-bert/bert-base-multilingual-cased
widget:
- source_sentence: We cope with this pressure by having brains, and within our brains,
    decision-making centers that I've called here the "Actor."
  sentences:
  - Nós lidamos com esta pressão porque temos cérebro, e dentro do nosso cérebro,
    centros de tomada de decisão a que eu chamei aqui o "Ator".
  - Isto significa que o Crítico deve ter falado naquele animal, e que o Crítico deve
    estar contido entre os neurónios produtores de dopamina na esquerda, mas não nos
    neurónios produtores de dopamina na direita.
  - Na ressonância magnética e na espetroscopia de MR  a atividade do tumor está
    a vermelho 
- source_sentence: Once it's a closed system, you will have legal liability if you
    do not urge your CEO to get the maximum income from reducing and trading the carbon
    emissions that can be avoided.
  sentences:
  - (Risas) Espero que las conversaciones aquí en TED me ayuden a terminarla.
  - Una vez que es un sistema cerrado, tendrán responsabilidad legal si no exhortan
    a su ejecutivo en jefe a obtener el máximo ingreso de la reducción y comercialización
    de emisiones de carbono que pueden ser evitadas.
  - Pero también son muy efectivas en desviar nuestro camino.
- source_sentence: Whenever it comes up to the midpoint, it pauses, it carefully scans
    the odor interface as if it was sniffing out its environment, and then it turns
    around.
  sentences:
  - Tiene que decidir si dar la vuelta y quedarse en el mismo olor, o si cruzar la
    línea del medio y probar algo nuevo.
  - Ésta es una oportunidad.
  - Cada vez que llega al medio, se detiene analiza con cuidado la interfaz de olor,
    como si estuviera olfateando su entorno, y luego da la vuelta.
- source_sentence: You've seen the documentaries of sweatshops making garments all
    over the world, even in developed countries.
  sentences:
  - No llegaron muy lejos, obviamente.
  - Uds ya han visto documentales de los talleres de confección de prendas en todo
    el mundo, incluso en los países desarrollados.
  - Y los maestros también están frustrados.
- source_sentence: It's hands-on, it's in-your-face, it requires an active engagement,
    and it allows kids to apply all the core subject learning in real ways.
  sentences:
  - É prático, é presencial, isso requer uma participação ativa, e permite que as
    crianças apliquem todos os tópicos importantes de aprendizagem de forma real.
  - E no mundo do áudio que é quando o microfone fica muito perto da origem do som,
    e então ele entra nessa repetição auto-destrutiva que cria um som muito desagradável.
  - Vamos encarar a realidade, o contrato de uma grande marca multinacional para um
    fornecedor na Índia ou China tem um poder persuasivo muito maior do que as leis
    locais de trabalho, do que as regras ambientais locais, do que os padrões locais
    de Direitos Humanos.
datasets:
- sentence-transformers/parallel-sentences-talks
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
  results:
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en es
      type: MSE-val-en-es
    metrics:
    - type: negative_mse
      value: -31.554964184761047
      name: Negative Mse
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en pt
      type: MSE-val-en-pt
    metrics:
    - type: negative_mse
      value: -31.72471523284912
      name: Negative Mse
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: MSE val en pt br
      type: MSE-val-en-pt-br
    metrics:
    - type: negative_mse
      value: -30.244168639183044
      name: Negative Mse
---

# SentenceTransformer based on google-bert/bert-base-multilingual-cased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the en-es, en-pt and [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - en-es
    - en-pt
    - [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-es-pt-cased-matryoshka")
# Run inference
sentences = [
    "It's hands-on, it's in-your-face, it requires an active engagement, and it allows kids to apply all the core subject learning in real ways.",
    'É prático, é presencial, isso requer uma participação ativa, e permite que as crianças apliquem todos os tópicos importantes de aprendizagem de forma real.',
    'Vamos encarar a realidade, o contrato de uma grande marca multinacional para um fornecedor na Índia ou China tem um poder persuasivo muito maior do que as leis locais de trabalho, do que as regras ambientais locais, do que os padrões locais de Direitos Humanos.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Knowledge Distillation

* Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
|:-----------------|:--------------|:--------------|:-----------------|
| **negative_mse** | **-31.555**   | **-31.7247**  | **-30.2442**     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### en-es

* Dataset: en-es
* Size: 1,612,538 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                | non_english                                                                                                                              | label                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
  | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code>     |
  | <code>One thing I often ask about is ancient Greek and how this relates.</code>                                                                        | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code>                                                  | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> |
  | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code>                                                        | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code>                                            | <code>[-0.019420800730586052, 0.10435999929904938, 0.009455346502363682, -0.02814250998198986, -0.017036104574799538, ...]</code>     |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### en-pt

* Dataset: en-pt
* Size: 1,542,353 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 5 tokens</li><li>mean: 24.95 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                                                                                                          | non_english                                                                                                                                                                                                                                                                               | label                                                                                                                             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
  | <code>And the country that does this first will, in my view, leapfrog others in achieving a new economy even, an improved economy, an improved outlook.</code>                                                                                                   | <code>E o país que fizer isto primeiro vai, na minha opinião, ultrapassar outros em alcançar uma nova economia até uma economia melhorada, uma visão melhorada.</code>                                                                                                                    | <code>[-0.016568265855312347, 0.10754051059484482, -0.025950804352760315, -0.045048732310533524, 0.01812679134309292, ...]</code> |
  | <code>In fact, I even talk about us moving from what we often call now the "knowledge economy" to what we might call a "computational knowledge economy," where high-level math is integral to what everyone does in the way that knowledge currently is.</code> | <code>De facto, eu até falo de mudarmos do que chamamos hoje a economia do conhecimento para o que poderemos chamar a economia do conhecimento computacional, onde a matemática de alto nível está integrada no que toda a gente faz da forma que o conhecimento actualmente está.</code> | <code>[-0.014394757337868214, 0.11997982114553452, -0.041491635143756866, -0.024539340287446976, 0.01425645500421524, ...]</code> |
  | <code>We can engage so many more students with this, and they can have a better time doing it.</code>                                                                                                                                                            | <code>Podemos cativar tantos mais estudantes com isto, e eles podem divertir-se mais a fazê-lo.</code>                                                                                                                                                                                    | <code>[-0.034232210367918015, 0.04277702793478966, -0.05683526396751404, -0.006559622474014759, -0.00639274762943387, ...]</code> |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### en-pt-br

* Dataset: [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 405,807 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.39 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.52 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                | non_english                                                                                                                                                | label                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
  | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>E também existem alguns aspectos conceituais que também podem se beneficiar do cálculo manual, mas eu acho que eles são relativamente poucos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code>     |
  | <code>One thing I often ask about is ancient Greek and how this relates.</code>                                                                        | <code>Uma coisa sobre a qual eu pergunto com frequencia é grego antigo e como ele se relaciona a isto.</code>                                              | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> |
  | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code>                                                        | <code>Vejam, o que estamos fazendo agora, é que estamos forçando as pessoas a aprender matemática.</code>                                                  | <code>[-0.019420800730586052, 0.10435999929904938, 0.009455346502363682, -0.02814250998198986, -0.017036104574799538, ...]</code>     |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Datasets

#### en-es

* Dataset: en-es
* Size: 2,990 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                                       | label                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>Muchas gracias Chris.</code>                                                                                                                                | <code>[-0.061677999794483185, -0.04450423642992973, -0.0325058177113533, -0.06641444563865662, 0.003981702029705048, ...]</code>   |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code>                        | <code>[0.011398610658943653, -0.02500406838953495, -0.009884772822260857, 0.009336909279227257, 0.0030828709714114666, ...]</code> |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### en-pt

* Dataset: en-pt
* Size: 2,992 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.58 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                                          | label                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>Muito obrigado, Chris.</code>                                                                                                                                  | <code>[-0.06167794018983841, -0.04450422152876854, -0.032505810260772705, -0.06641443818807602, 0.0039817155338823795, ...]</code> |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>É realmente uma grande honra ter a oportunidade de pisar este palco pela segunda vez. Estou muito agradecido.</code>                                           | <code>[0.011398610658943653, -0.02500406838953495, -0.009884772822260857, 0.009336909279227257, 0.0030828709714114666, ...]</code> |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>Fiquei muito impressionado com esta conferência e quero agradecer a todos os imensos comentários simpáticos sobre o que eu tinha a dizer naquela noite.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

#### en-pt-br

* Dataset: [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 992 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 992 samples:
  |         | english                                                                           | non_english                                                                        | label                                |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                            | string                                                                             | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.8 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 28.92 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                                       | label                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>Muito obrigado, Chris.</code>                                                                                                                               | <code>[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]</code>  |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>É realmente uma grande honra ter a oportunidade de estar neste palco pela segunda vez. Estou muito agradecido.</code>                                       | <code>[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]</code>  |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>Eu fui muito aplaudido por esta conferência e quero agradecer a todos pelos muitos comentários delicados sobre o que eu tinha a dizer naquela noite.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
  ```json
  {
      "loss": "MSELoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | en-es loss | en-pt loss | en-pt-br loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
|:------:|:-----:|:-------------:|:----------:|:----------:|:-------------:|:--------------------------:|:--------------------------:|:-----------------------------:|
| 0.0719 | 1000  | 0.028         | 0.0237     | 0.0237     | 0.0231        | -24.8296                   | -24.6706                   | -25.9588                      |
| 0.1438 | 2000  | 0.0227        | 0.0213     | 0.0215     | 0.0208        | -26.2546                   | -26.2964                   | -25.9444                      |
| 0.2157 | 3000  | 0.0213        | 0.0203     | 0.0205     | 0.0199        | -27.7589                   | -27.8414                   | -27.1460                      |
| 0.2876 | 4000  | 0.0206        | 0.0197     | 0.0199     | 0.0193        | -29.1241                   | -29.2139                   | -28.3021                      |
| 0.3595 | 5000  | 0.0201        | 0.0194     | 0.0195     | 0.0190        | -30.1292                   | -30.2692                   | -29.0747                      |
| 0.4313 | 6000  | 0.0198        | 0.0190     | 0.0192     | 0.0187        | -30.3807                   | -30.4967                   | -29.3404                      |
| 0.5032 | 7000  | 0.0195        | 0.0188     | 0.0190     | 0.0185        | -31.0799                   | -31.2305                   | -29.9549                      |
| 0.5751 | 8000  | 0.0193        | 0.0186     | 0.0188     | 0.0183        | -31.1297                   | -31.2883                   | -30.0050                      |
| 0.6470 | 9000  | 0.0192        | 0.0185     | 0.0186     | 0.0182        | -31.2788                   | -31.4498                   | -30.0589                      |
| 0.7189 | 10000 | 0.019         | 0.0184     | 0.0185     | 0.0181        | -31.3215                   | -31.4903                   | -30.0056                      |
| 0.7908 | 11000 | 0.019         | 0.0183     | 0.0184     | 0.0180        | -31.4416                   | -31.6329                   | -30.1343                      |
| 0.8627 | 12000 | 0.0189        | 0.0182     | 0.0184     | 0.0180        | -31.5266                   | -31.6991                   | -30.1956                      |
| 0.9346 | 13000 | 0.0188        | 0.0182     | 0.0183     | 0.0179        | -31.5550                   | -31.7247                   | -30.2442                      |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->