lucasbertola commited on
Commit
fba0636
1 Parent(s): adabdc8

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.52 +/- 1.15
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.45 +/- 0.08
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cac515129e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cac5151c680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690042759735351067, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAembBPtXqb7wtMgg/embBPtXqb7wtMgg/embBPtXqb7wtMgg/embBPtXqb7wtMgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVfdSv4Ey4D4h8om//TdtP6c15b6jppE/ruM0v5bc1T2TVv8+DVyKv1rUqz45+6M/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6ZsE+1epvvC0yCD8awus7BVnIuiLRCTx6ZsE+1epvvC0yCD8awus7BVnIuiLRCTx6ZsE+1epvvC0yCD8awus7BVnIuiLRCTx6ZsE+1epvvC0yCD8awus7BVnIuiLRCTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37773496 -0.01464339 0.5320156 ]\n [ 0.37773496 -0.01464339 0.5320156 ]\n [ 0.37773496 -0.01464339 0.5320156 ]\n [ 0.37773496 -0.01464339 0.5320156 ]]", "desired_goal": "[[-0.8240865 0.4378853 -1.0777017 ]\n [ 0.92663556 -0.44767496 1.1378978 ]\n [-0.7065991 0.10442464 0.49870738]\n [-1.0809342 0.3356045 1.2811042 ]]", "observation": "[[ 0.37773496 -0.01464339 0.5320156 0.00719477 -0.00152853 0.00841168]\n [ 0.37773496 -0.01464339 0.5320156 0.00719477 -0.00152853 0.00841168]\n [ 0.37773496 -0.01464339 0.5320156 0.00719477 -0.00152853 0.00841168]\n [ 0.37773496 -0.01464339 0.5320156 0.00719477 -0.00152853 0.00841168]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw/PmPUOxlT1OJgI9RAiTvSe0iz2Cy/48M2nZvWYgUD22la89QaMJvrZe7r2zpgs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11276963 0.07309201 0.03177481]\n [-0.07179311 0.06821471 0.0311029 ]\n [-0.10615768 0.05081215 0.08573477]\n [-0.13441183 -0.11639158 0.1363781 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIks7AyMsaDsCUhpRSlIwBbJRLMowBdJRHQKdp+gVXV9Z1fZQoaAZoCWgPQwgOpItNK+UGwJSGlFKUaBVLMmgWR0CnaZdHc1wYdX2UKGgGaAloD0MIjCsujsptAcCUhpRSlGgVSzJoFkdAp2kvW8RL9XV9lChoBmgJaA9DCK8hOC7jdhDAlIaUUpRoFUsyaBZHQKdoyzF+/g11fZQoaAZoCWgPQwjtKTkn9jAHwJSGlFKUaBVLMmgWR0CnazMN+b3HdX2UKGgGaAloD0MIHt0Ii4rIEsCUhpRSlGgVSzJoFkdAp2rQIv8IiXV9lChoBmgJaA9DCJTeN772DADAlIaUUpRoFUsyaBZHQKdqaKekHlh1fZQoaAZoCWgPQwjMfXIUIIoOwJSGlFKUaBVLMmgWR0CnagOOCGvfdX2UKGgGaAloD0MINlt5yf9k+7+UhpRSlGgVSzJoFkdAp2yh15jYqXV9lChoBmgJaA9DCIkjD0QWSQTAlIaUUpRoFUsyaBZHQKdsQBYFJQN1fZQoaAZoCWgPQwgXDRmPUrkTwJSGlFKUaBVLMmgWR0Cna9lWOp84dX2UKGgGaAloD0MIoTAo02jy+r+UhpRSlGgVSzJoFkdAp2t1T72tdXV9lChoBmgJaA9DCNi7P96rVhDAlIaUUpRoFUsyaBZHQKducSzw+dN1fZQoaAZoCWgPQwiKWppbIYwKwJSGlFKUaBVLMmgWR0Cnbg8wg1WKdX2UKGgGaAloD0MI2Lj+XZ8587+UhpRSlGgVSzJoFkdAp22n/1g6VHV9lChoBmgJaA9DCGlxxjAnSA7AlIaUUpRoFUsyaBZHQKdtQ+XZ5A11fZQoaAZoCWgPQwjUtmEUBO8CwJSGlFKUaBVLMmgWR0CncDh4MWoFdX2UKGgGaAloD0MIuvPEc7ZAB8CUhpRSlGgVSzJoFkdAp2/WRYA80XV9lChoBmgJaA9DCJG3XP3YpALAlIaUUpRoFUsyaBZHQKdvb3ztkWh1fZQoaAZoCWgPQwhcGyrG+fsAwJSGlFKUaBVLMmgWR0CnbwtUwSJ1dX2UKGgGaAloD0MIBg39E1ysAMCUhpRSlGgVSzJoFkdAp3IpIWgvlHV9lChoBmgJaA9DCDikUYGTDQbAlIaUUpRoFUsyaBZHQKdxxqBVdX11fZQoaAZoCWgPQwg4glSKHa0XwJSGlFKUaBVLMmgWR0CncV8/dIoWdX2UKGgGaAloD0MI/InKhjWVDcCUhpRSlGgVSzJoFkdAp3D7GDL8rXV9lChoBmgJaA9DCAytTs5QnATAlIaUUpRoFUsyaBZHQKdz0qjJuEV1fZQoaAZoCWgPQwj2JLA5Bw8FwJSGlFKUaBVLMmgWR0Cnc3BiCrcTdX2UKGgGaAloD0MINjy9UpZh/r+UhpRSlGgVSzJoFkdAp3MIeNkvsnV9lChoBmgJaA9DCHe7XpoiUBDAlIaUUpRoFUsyaBZHQKdyo4WDYiB1fZQoaAZoCWgPQwjaqE4Hst70v5SGlFKUaBVLMmgWR0CndQq3uuzQdX2UKGgGaAloD0MIVYodjUP9+r+UhpRSlGgVSzJoFkdAp3Sn+GXXy3V9lChoBmgJaA9DCJ2cobjjTf6/lIaUUpRoFUsyaBZHQKd0QDoyKvV1fZQoaAZoCWgPQwhN9zqpL0sPwJSGlFKUaBVLMmgWR0Cnc9wLNOdodX2UKGgGaAloD0MImBdgH526EMCUhpRSlGgVSzJoFkdAp3ZDoQnQY3V9lChoBmgJaA9DCLkZbsDnlxHAlIaUUpRoFUsyaBZHQKd14M5OrQx1fZQoaAZoCWgPQwhQUmABTPkDwJSGlFKUaBVLMmgWR0CndXl10T11dX2UKGgGaAloD0MIfjoeM1CZCcCUhpRSlGgVSzJoFkdAp3UUjX4CZHV9lChoBmgJaA9DCKsgBrr2JQTAlIaUUpRoFUsyaBZHQKd3cAAhje91fZQoaAZoCWgPQwgYWp2coagSwJSGlFKUaBVLMmgWR0Cndw4j8k2QdX2UKGgGaAloD0MIHv8FggAZDMCUhpRSlGgVSzJoFkdAp3amK4x1xXV9lChoBmgJaA9DCMx9chQgagLAlIaUUpRoFUsyaBZHQKd2QSwGGEh1fZQoaAZoCWgPQwgZVYZxN+gOwJSGlFKUaBVLMmgWR0CneJ0YKpkxdX2UKGgGaAloD0MInlxTILODEcCUhpRSlGgVSzJoFkdAp3g6TlkpZ3V9lChoBmgJaA9DCAGloUYhSfO/lIaUUpRoFUsyaBZHQKd30l41P311fZQoaAZoCWgPQwj+YUuPptoHwJSGlFKUaBVLMmgWR0Cnd21B2OhkdX2UKGgGaAloD0MIKbLWUGqvAMCUhpRSlGgVSzJoFkdAp3mpOJtSAHV9lChoBmgJaA9DCJ/J/nkaUA3AlIaUUpRoFUsyaBZHQKd5Rkd3jdZ1fZQoaAZoCWgPQwgGoFG69C/0v5SGlFKUaBVLMmgWR0CneN45ksjFdX2UKGgGaAloD0MIsRpLWBtjD8CUhpRSlGgVSzJoFkdAp3h4/C66KHV9lChoBmgJaA9DCEcFTraBmwjAlIaUUpRoFUsyaBZHQKd6vXXiBGx1fZQoaAZoCWgPQwj8brplh9gGwJSGlFKUaBVLMmgWR0CnelqlYU35dX2UKGgGaAloD0MIY9UgzO1+BsCUhpRSlGgVSzJoFkdAp3nyxgRbr3V9lChoBmgJaA9DCC3r/rEQXQ3AlIaUUpRoFUsyaBZHQKd5jezlcQl1fZQoaAZoCWgPQwi1wB4TKU33v5SGlFKUaBVLMmgWR0Cne88xbjcVdX2UKGgGaAloD0MI0bLuHwuR/7+UhpRSlGgVSzJoFkdAp3ttelbeM3V9lChoBmgJaA9DCEoIVtXL7wLAlIaUUpRoFUsyaBZHQKd7BtdiUgV1fZQoaAZoCWgPQwifVWZK668AwJSGlFKUaBVLMmgWR0CneqMEidJ8dX2UKGgGaAloD0MIJJf/kH67BcCUhpRSlGgVSzJoFkdAp30jsF+uvHV9lChoBmgJaA9DCIYfnE8dqxTAlIaUUpRoFUsyaBZHQKd8wZ4Oc2B1fZQoaAZoCWgPQwjxnZj1Yujyv5SGlFKUaBVLMmgWR0CnfFmhmGucdX2UKGgGaAloD0MIWksBaf8jCsCUhpRSlGgVSzJoFkdAp3v0wWWQfnV9lChoBmgJaA9DCEzGMZI9AgvAlIaUUpRoFUsyaBZHQKd+PIOH3111fZQoaAZoCWgPQwitvU9VoSEHwJSGlFKUaBVLMmgWR0CnfdnBtUGWdX2UKGgGaAloD0MIg8DKoUXWAsCUhpRSlGgVSzJoFkdAp31xz1bqyHV9lChoBmgJaA9DCOfFia921ATAlIaUUpRoFUsyaBZHQKd9DM23rlh1fZQoaAZoCWgPQwg6evzepn8AwJSGlFKUaBVLMmgWR0Cnf1jxkNF0dX2UKGgGaAloD0MIxsA6jh9qCsCUhpRSlGgVSzJoFkdAp372EmICVHV9lChoBmgJaA9DCEEuceSByAnAlIaUUpRoFUsyaBZHQKd+jlHSWqt1fZQoaAZoCWgPQwg6ysFsAuwHwJSGlFKUaBVLMmgWR0CnfiltbcGkdX2UKGgGaAloD0MIuAVLdQEv87+UhpRSlGgVSzJoFkdAp4B6XOW0JHV9lChoBmgJaA9DCGBY/nxbUATAlIaUUpRoFUsyaBZHQKeAF7Jnxrl1fZQoaAZoCWgPQwiPVN/5RekHwJSGlFKUaBVLMmgWR0Cnf6+yZ8a5dX2UKGgGaAloD0MIHeT1YFKcDsCUhpRSlGgVSzJoFkdAp39Kv7m+03V9lChoBmgJaA9DCANf0a3X9Pe/lIaUUpRoFUsyaBZHQKeBtRjz7Mx1fZQoaAZoCWgPQwgiwr8IGnMLwJSGlFKUaBVLMmgWR0CngVIuGsV+dX2UKGgGaAloD0MId4cUAyRaAsCUhpRSlGgVSzJoFkdAp4DrC+De03V9lChoBmgJaA9DCPbwZaIIKfu/lIaUUpRoFUsyaBZHQKeAhhttQ9B1fZQoaAZoCWgPQwhcy2Q4nu8FwJSGlFKUaBVLMmgWR0CngtgTAWSEdX2UKGgGaAloD0MIx9rf2R59AsCUhpRSlGgVSzJoFkdAp4J1VxS5y3V9lChoBmgJaA9DCB0CRwINdvm/lIaUUpRoFUsyaBZHQKeCDWCEpRZ1fZQoaAZoCWgPQwikpl1MM10EwJSGlFKUaBVLMmgWR0CngahwEQoTdX2UKGgGaAloD0MIqB5pcFvbCMCUhpRSlGgVSzJoFkdAp4P04cWCVnV9lChoBmgJaA9DCPVnP1JERgnAlIaUUpRoFUsyaBZHQKeDkhC+lCV1fZQoaAZoCWgPQwjVzFoKSBsIwJSGlFKUaBVLMmgWR0CngyoYvWYndX2UKGgGaAloD0MIyeTUzjC1/7+UhpRSlGgVSzJoFkdAp4LFA3T/hnV9lChoBmgJaA9DCE1qaAOw8RXAlIaUUpRoFUsyaBZHQKeFBBdld1N1fZQoaAZoCWgPQwjYuz/eq7YHwJSGlFKUaBVLMmgWR0CnhKEuQIUrdX2UKGgGaAloD0MICHb8FwhCBsCUhpRSlGgVSzJoFkdAp4Q5QUHpr3V9lChoBmgJaA9DCBZM/FHUqRDAlIaUUpRoFUsyaBZHQKeD1BQemvZ1fZQoaAZoCWgPQwjJrN7hdogCwJSGlFKUaBVLMmgWR0Cnhg9KmKqGdX2UKGgGaAloD0MIRaFl3T/WDsCUhpRSlGgVSzJoFkdAp4WscCHRC3V9lChoBmgJaA9DCJrS+lsCsAPAlIaUUpRoFUsyaBZHQKeFRFirksB1fZQoaAZoCWgPQwjUKvpDM4/+v5SGlFKUaBVLMmgWR0CnhN938n/ldX2UKGgGaAloD0MIsrtASYGFBMCUhpRSlGgVSzJoFkdAp4cdRtP56HV9lChoBmgJaA9DCHF1AMRdffy/lIaUUpRoFUsyaBZHQKeGuoHcDbJ1fZQoaAZoCWgPQwh7h9uhYTEMwJSGlFKUaBVLMmgWR0CnhlJ5NXYEdX2UKGgGaAloD0MIKPBOPj22/7+UhpRSlGgVSzJoFkdAp4XtYSxqwnV9lChoBmgJaA9DCFMJT+j1JyXAlIaUUpRoFUsyaBZHQKeI550r9VF1fZQoaAZoCWgPQwhVT+YffTMCwJSGlFKUaBVLMmgWR0CniIWpQ1rJdX2UKGgGaAloD0MI66pALQZvCsCUhpRSlGgVSzJoFkdAp4gezdDYy3V9lChoBmgJaA9DCPD8ogT95QrAlIaUUpRoFUsyaBZHQKeHutNBWxR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cac515129e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cac5151c680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690046122342034441, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArjdoP6DAkr+Or4i/rbaqPwsfnj+hDXy+25WYP2N4j77XoF++5tiVP24yy79hcIA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1oNvP9RYlL/WE5O/kWrGP3tUnD8oiZi+rbWVP0Jhmb6qwZ2+oZqaP19gzr9tFkM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuN2g/oMCSv46viL9rWNW6yQBivjGpd7+ttqo/Cx+eP6ENfL6PTwM/SUW7PbgK7D3blZg/Y3iPvtegX77U+Ag+OAuBPUjCRz7m2JU/bjLLv2FwgD7YnYA9BGDfvtImDL6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.9070996 -1.1465034 -1.0678575 ]\n [ 1.3336998 1.2353224 -0.24614574]\n [ 1.1920732 -0.28021535 -0.218387 ]\n [ 1.1706817 -1.5874765 0.25085738]]", "desired_goal": "[[ 0.9356054 -1.1589608 -1.1490428 ]\n [ 1.5501271 1.2213281 -0.29792142]\n [ 1.1696068 -0.29957014 -0.30811816]\n [ 1.2078439 -1.612316 0.19051524]]", "observation": "[[ 0.9070996 -1.1465034 -1.0678575 -0.0016277 -0.22070612 -0.9674254 ]\n [ 1.3336998 1.2353224 -0.24614574 0.5129327 0.09144074 0.11525482]\n [ 1.1920732 -0.28021535 -0.218387 0.1337617 0.06300968 0.19507706]\n [ 1.1706817 -1.5874765 0.25085738 0.06280106 -0.43627942 -0.13686684]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuyVCPZ3iCL5lwAY9y67VvHikHr2his49xHKEPZEQUb3gQi89BZAXvtlSOzzPEww9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04739926 -0.13367696 0.03289833]\n [-0.02608432 -0.03873107 0.10085035]\n [ 0.06467202 -0.05104119 0.04278839]\n [-0.14801033 0.01143333 0.03419858]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhEawcf274r+UhpRSlIwBbJRLMowBdJRHQKsJHFx4ptt1fZQoaAZoCWgPQwg+WwcHexPev5SGlFKUaBVLMmgWR0CrCMxNATqTdX2UKGgGaAloD0MIH7x2acNh07+UhpRSlGgVSzJoFkdAqwiD/0dzXHV9lChoBmgJaA9DCGTJHMu76uG/lIaUUpRoFUsyaBZHQKsIDTER8MN1fZQoaAZoCWgPQwgNqDej5iviv5SGlFKUaBVLMmgWR0CrCglEy+HrdX2UKGgGaAloD0MIcHmsGRnk2L+UhpRSlGgVSzJoFkdAqwm5L5AQhHV9lChoBmgJaA9DCLPviuB/q+S/lIaUUpRoFUsyaBZHQKsJcOJ+Dvp1fZQoaAZoCWgPQwiQL6GCwwvpv5SGlFKUaBVLMmgWR0CrCPoFV1fWdX2UKGgGaAloD0MIbEHvjSEA27+UhpRSlGgVSzJoFkdAqwsoGfPHDXV9lChoBmgJaA9DCGv0aoDSUOa/lIaUUpRoFUsyaBZHQKsK2Mo+fRN1fZQoaAZoCWgPQwjv/nivWpnUv5SGlFKUaBVLMmgWR0CrCpCFTNt7dX2UKGgGaAloD0MIrpy9M9qq4b+UhpRSlGgVSzJoFkdAqwoZv1lGw3V9lChoBmgJaA9DCBNFSN3OPuK/lIaUUpRoFUsyaBZHQKsMHCFbmlt1fZQoaAZoCWgPQwi7RzZXzXPhv5SGlFKUaBVLMmgWR0CrC8w6QvHtdX2UKGgGaAloD0MIRImWPJ4W6b+UhpRSlGgVSzJoFkdAqwuD63y7PXV9lChoBmgJaA9DCN3QlJ1+UNW/lIaUUpRoFUsyaBZHQKsLDQ1rIo51fZQoaAZoCWgPQwieew+XHPfjv5SGlFKUaBVLMmgWR0CrDRGsFMZhdX2UKGgGaAloD0MIBU8hV+pZ1b+UhpRSlGgVSzJoFkdAqwzBsl9jPXV9lChoBmgJaA9DCAM/qmG/J9+/lIaUUpRoFUsyaBZHQKsMeW2w3YN1fZQoaAZoCWgPQwh3EaYol8bYv5SGlFKUaBVLMmgWR0CrDALEUCaJdX2UKGgGaAloD0MIWHTrNT2o5b+UhpRSlGgVSzJoFkdAqw4JT2nKn3V9lChoBmgJaA9DCMdHizOGueC/lIaUUpRoFUsyaBZHQKsNuSq2jO91fZQoaAZoCWgPQwjGFoIclDDZv5SGlFKUaBVLMmgWR0CrDXDa4+bFdX2UKGgGaAloD0MIaW6FsBrL47+UhpRSlGgVSzJoFkdAqwz57PY4AHV9lChoBmgJaA9DCL8s7dRcbuC/lIaUUpRoFUsyaBZHQKsO/eTmnwZ1fZQoaAZoCWgPQwj6ff/mxYnZv5SGlFKUaBVLMmgWR0CrDq6nzg/DdX2UKGgGaAloD0MIzjP2JRsP5L+UhpRSlGgVSzJoFkdAqw5nXf642HV9lChoBmgJaA9DCEfoZ+p1i9e/lIaUUpRoFUsyaBZHQKsN8YOUdJd1fZQoaAZoCWgPQwjJjo1AvK7Yv5SGlFKUaBVLMmgWR0CrD/c14xDcdX2UKGgGaAloD0MIhdIXQs7717+UhpRSlGgVSzJoFkdAqw+nGIbfg3V9lChoBmgJaA9DCFdD4h5Ln+W/lIaUUpRoFUsyaBZHQKsPXrVOKwZ1fZQoaAZoCWgPQwiw5gDBHD3jv5SGlFKUaBVLMmgWR0CrDuf9xZMddX2UKGgGaAloD0MIT1lN1xNd3L+UhpRSlGgVSzJoFkdAqxEMSCe2/nV9lChoBmgJaA9DCA5LAz+qYdm/lIaUUpRoFUsyaBZHQKsQvSde6Zp1fZQoaAZoCWgPQwj+tFGdDmTjv5SGlFKUaBVLMmgWR0CrEHWp6yB1dX2UKGgGaAloD0MIPJ8B9WZU5L+UhpRSlGgVSzJoFkdAqxAA20iQk3V9lChoBmgJaA9DCDvj++JSleG/lIaUUpRoFUsyaBZHQKsSB3ai9Ix1fZQoaAZoCWgPQwjF506w/zrYv5SGlFKUaBVLMmgWR0CrEbd8qnWKdX2UKGgGaAloD0MIwap6+Z2m4L+UhpRSlGgVSzJoFkdAqxFvOSntOXV9lChoBmgJaA9DCNGy7h8L0eG/lIaUUpRoFUsyaBZHQKsQ+GFi8Wd1fZQoaAZoCWgPQwiVC5V/La/Sv5SGlFKUaBVLMmgWR0CrEvueBg/kdX2UKGgGaAloD0MIUMQihh1G5b+UhpRSlGgVSzJoFkdAqxKrsY2sJnV9lChoBmgJaA9DCFJ/vcKCe+O/lIaUUpRoFUsyaBZHQKsSY0/GEPF1fZQoaAZoCWgPQwiDpbqAlxndv5SGlFKUaBVLMmgWR0CrEexsVLzxdX2UKGgGaAloD0MIGjbK+s3E17+UhpRSlGgVSzJoFkdAqxPylnAZbnV9lChoBmgJaA9DCAlTlEvjF+K/lIaUUpRoFUsyaBZHQKsTom65Gz91fZQoaAZoCWgPQwjfN772zJLUv5SGlFKUaBVLMmgWR0CrE1oPK+zudX2UKGgGaAloD0MIrDyBsFOs4r+UhpRSlGgVSzJoFkdAqxLjS5RTCXV9lChoBmgJaA9DCHjVA+YhU9e/lIaUUpRoFUsyaBZHQKsVLdWQwK11fZQoaAZoCWgPQwiA8+LEVzvhv5SGlFKUaBVLMmgWR0CrFN6pgkTpdX2UKGgGaAloD0MI9b2G4LiM3L+UhpRSlGgVSzJoFkdAqxSXMW43FXV9lChoBmgJaA9DCCIZcmw9Q9m/lIaUUpRoFUsyaBZHQKsUITRplBh1fZQoaAZoCWgPQwjjpgaaz7nhv5SGlFKUaBVLMmgWR0CrFsfIKc/ddX2UKGgGaAloD0MIIhyz7Elg07+UhpRSlGgVSzJoFkdAqxZ4ldC3PXV9lChoBmgJaA9DCDYf14aKceK/lIaUUpRoFUsyaBZHQKsWMUqQRwt1fZQoaAZoCWgPQwhPWOIBZVPjv5SGlFKUaBVLMmgWR0CrFbtI9TxYdX2UKGgGaAloD0MI/7EQHQJH4b+UhpRSlGgVSzJoFkdAqxhs+C9RJnV9lChoBmgJaA9DCBxAv+/fvN+/lIaUUpRoFUsyaBZHQKsYHe3QUpN1fZQoaAZoCWgPQwiLcJNRZZjjv5SGlFKUaBVLMmgWR0CrF9aN+9amdX2UKGgGaAloD0MI4EvhQbPr07+UhpRSlGgVSzJoFkdAqxdg2VE/jnV9lChoBmgJaA9DCMMuih74GNq/lIaUUpRoFUsyaBZHQKsaFjjJdSl1fZQoaAZoCWgPQwg4FakwthDlv5SGlFKUaBVLMmgWR0CrGccRcu8LdX2UKGgGaAloD0MIyT1d3bHY27+UhpRSlGgVSzJoFkdAqxl/m3fAK3V9lChoBmgJaA9DCOCGGK95Vdq/lIaUUpRoFUsyaBZHQKsZCeTV2A51fZQoaAZoCWgPQwhApN++DpzYv5SGlFKUaBVLMmgWR0CrG9LmZE2HdX2UKGgGaAloD0MIucSRByKL1r+UhpRSlGgVSzJoFkdAqxuDuSfUWnV9lChoBmgJaA9DCAJJ2LeTiNy/lIaUUpRoFUsyaBZHQKsbPEd/8VJ1fZQoaAZoCWgPQwhkPEolPKHkv5SGlFKUaBVLMmgWR0CrGsXeN1hcdX2UKGgGaAloD0MIlYCYhAt517+UhpRSlGgVSzJoFkdAqxzGRoysS3V9lChoBmgJaA9DCMYYWMfxQ+S/lIaUUpRoFUsyaBZHQKscdjLjght1fZQoaAZoCWgPQwhbs5WX/M/iv5SGlFKUaBVLMmgWR0CrHC3XRPXTdX2UKGgGaAloD0MIzzEge7373r+UhpRSlGgVSzJoFkdAqxu29OARTXV9lChoBmgJaA9DCI+mejL/6NW/lIaUUpRoFUsyaBZHQKsdzKaoddV1fZQoaAZoCWgPQwi4kh0bgXjjv5SGlFKUaBVLMmgWR0CrHXyQYDT0dX2UKGgGaAloD0MIP1WFBmLZ2b+UhpRSlGgVSzJoFkdAqx00OPNmlXV9lChoBmgJaA9DCCLCvwgaM9y/lIaUUpRoFUsyaBZHQKscvXT3IuJ1fZQoaAZoCWgPQwhzol2FlB/mv5SGlFKUaBVLMmgWR0CrHsLXL/0edX2UKGgGaAloD0MIRG/x8J6D4b+UhpRSlGgVSzJoFkdAqx5y2Yv38HV9lChoBmgJaA9DCEZe1sQCX92/lIaUUpRoFUsyaBZHQKseKolUp/h1fZQoaAZoCWgPQwjbUDHO34Tfv5SGlFKUaBVLMmgWR0CrHbO+qR2bdX2UKGgGaAloD0MIoUs49BYP1b+UhpRSlGgVSzJoFkdAqx/Zoh6jWXV9lChoBmgJaA9DCJw0DYrmgem/lIaUUpRoFUsyaBZHQKsfiZlWfbt1fZQoaAZoCWgPQwiGAUuuYvHfv5SGlFKUaBVLMmgWR0CrH0FnqVyFdX2UKGgGaAloD0MIsFjDRe7p2L+UhpRSlGgVSzJoFkdAqx7Kzw+dLHV9lChoBmgJaA9DCI4j1uJTAOC/lIaUUpRoFUsyaBZHQKsg5v3JxNt1fZQoaAZoCWgPQwgAN4sXC8Pgv5SGlFKUaBVLMmgWR0CrIJcRL9MsdX2UKGgGaAloD0MIW+ogrwcT4b+UhpRSlGgVSzJoFkdAqyBO4NI9T3V9lChoBmgJaA9DCHE8nwH15uK/lIaUUpRoFUsyaBZHQKsf2DL8rI51fZQoaAZoCWgPQwiYolwav/Dav5SGlFKUaBVLMmgWR0CrIfrJKaoddX2UKGgGaAloD0MIZaVJKej24b+UhpRSlGgVSzJoFkdAqyGrIkqto3V9lChoBmgJaA9DCFjk1w+xwdW/lIaUUpRoFUsyaBZHQKshYtdzGPx1fZQoaAZoCWgPQwgkgQabOg/mv5SGlFKUaBVLMmgWR0CrIOwW3z+WdX2UKGgGaAloD0MIg4jUtItp4L+UhpRSlGgVSzJoFkdAqyL60pmVaHV9lChoBmgJaA9DCBA+lGjJY+y/lIaUUpRoFUsyaBZHQKsiqt1ZDAt1fZQoaAZoCWgPQwjOHJJaKJnlv5SGlFKUaBVLMmgWR0CrImKlYU35dX2UKGgGaAloD0MI4WBvYkhO2r+UhpRSlGgVSzJoFkdAqyHr8tPHk3V9lChoBmgJaA9DCCqRRC+jWNq/lIaUUpRoFUsyaBZHQKsj91AZ88d1fZQoaAZoCWgPQwjH9e/6zNnhv5SGlFKUaBVLMmgWR0CrI6c4HX2/dX2UKGgGaAloD0MIzcr2IW+54L+UhpRSlGgVSzJoFkdAqyNezjWCmXV9lChoBmgJaA9DCKtefqfJjNi/lIaUUpRoFUsyaBZHQKsi5/lyR0V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:520bb864381caf1f06877368ab688424e1fd71b2b62d68bc70e1443605745b56
3
+ size 156457
ppo-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cac515129e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cac5151c680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {},
13
+ "num_timesteps": 1007616,
14
+ "_total_timesteps": 1000000,
15
+ "_num_timesteps_at_start": 0,
16
+ "seed": null,
17
+ "action_noise": null,
18
+ "start_time": 1690046122342034441,
19
+ "learning_rate": 0.0003,
20
+ "tensorboard_log": null,
21
+ "lr_schedule": {
22
+ ":type:": "<class 'function'>",
23
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
24
+ },
25
+ "_last_obs": {
26
+ ":type:": "<class 'collections.OrderedDict'>",
27
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArjdoP6DAkr+Or4i/rbaqPwsfnj+hDXy+25WYP2N4j77XoF++5tiVP24yy79hcIA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1oNvP9RYlL/WE5O/kWrGP3tUnD8oiZi+rbWVP0Jhmb6qwZ2+oZqaP19gzr9tFkM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuN2g/oMCSv46viL9rWNW6yQBivjGpd7+ttqo/Cx+eP6ENfL6PTwM/SUW7PbgK7D3blZg/Y3iPvtegX77U+Ag+OAuBPUjCRz7m2JU/bjLLv2FwgD7YnYA9BGDfvtImDL6UaA5LBEsGhpRoEnSUUpR1Lg==",
28
+ "achieved_goal": "[[ 0.9070996 -1.1465034 -1.0678575 ]\n [ 1.3336998 1.2353224 -0.24614574]\n [ 1.1920732 -0.28021535 -0.218387 ]\n [ 1.1706817 -1.5874765 0.25085738]]",
29
+ "desired_goal": "[[ 0.9356054 -1.1589608 -1.1490428 ]\n [ 1.5501271 1.2213281 -0.29792142]\n [ 1.1696068 -0.29957014 -0.30811816]\n [ 1.2078439 -1.612316 0.19051524]]",
30
+ "observation": "[[ 0.9070996 -1.1465034 -1.0678575 -0.0016277 -0.22070612 -0.9674254 ]\n [ 1.3336998 1.2353224 -0.24614574 0.5129327 0.09144074 0.11525482]\n [ 1.1920732 -0.28021535 -0.218387 0.1337617 0.06300968 0.19507706]\n [ 1.1706817 -1.5874765 0.25085738 0.06280106 -0.43627942 -0.13686684]]"
31
+ },
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'collections.OrderedDict'>",
38
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuyVCPZ3iCL5lwAY9y67VvHikHr2his49xHKEPZEQUb3gQi89BZAXvtlSOzzPEww9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
39
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
40
+ "desired_goal": "[[ 0.04739926 -0.13367696 0.03289833]\n [-0.02608432 -0.03873107 0.10085035]\n [ 0.06467202 -0.05104119 0.04278839]\n [-0.14801033 0.01143333 0.03419858]]",
41
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
42
+ },
43
+ "_episode_num": 0,
44
+ "use_sde": false,
45
+ "sde_sample_freq": -1,
46
+ "_current_progress_remaining": -0.007616000000000067,
47
+ "_stats_window_size": 100,
48
+ "ep_info_buffer": {
49
+ ":type:": "<class 'collections.deque'>",
50
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhEawcf274r+UhpRSlIwBbJRLMowBdJRHQKsJHFx4ptt1fZQoaAZoCWgPQwg+WwcHexPev5SGlFKUaBVLMmgWR0CrCMxNATqTdX2UKGgGaAloD0MIH7x2acNh07+UhpRSlGgVSzJoFkdAqwiD/0dzXHV9lChoBmgJaA9DCGTJHMu76uG/lIaUUpRoFUsyaBZHQKsIDTER8MN1fZQoaAZoCWgPQwgNqDej5iviv5SGlFKUaBVLMmgWR0CrCglEy+HrdX2UKGgGaAloD0MIcHmsGRnk2L+UhpRSlGgVSzJoFkdAqwm5L5AQhHV9lChoBmgJaA9DCLPviuB/q+S/lIaUUpRoFUsyaBZHQKsJcOJ+Dvp1fZQoaAZoCWgPQwiQL6GCwwvpv5SGlFKUaBVLMmgWR0CrCPoFV1fWdX2UKGgGaAloD0MIbEHvjSEA27+UhpRSlGgVSzJoFkdAqwsoGfPHDXV9lChoBmgJaA9DCGv0aoDSUOa/lIaUUpRoFUsyaBZHQKsK2Mo+fRN1fZQoaAZoCWgPQwjv/nivWpnUv5SGlFKUaBVLMmgWR0CrCpCFTNt7dX2UKGgGaAloD0MIrpy9M9qq4b+UhpRSlGgVSzJoFkdAqwoZv1lGw3V9lChoBmgJaA9DCBNFSN3OPuK/lIaUUpRoFUsyaBZHQKsMHCFbmlt1fZQoaAZoCWgPQwi7RzZXzXPhv5SGlFKUaBVLMmgWR0CrC8w6QvHtdX2UKGgGaAloD0MIRImWPJ4W6b+UhpRSlGgVSzJoFkdAqwuD63y7PXV9lChoBmgJaA9DCN3QlJ1+UNW/lIaUUpRoFUsyaBZHQKsLDQ1rIo51fZQoaAZoCWgPQwieew+XHPfjv5SGlFKUaBVLMmgWR0CrDRGsFMZhdX2UKGgGaAloD0MIBU8hV+pZ1b+UhpRSlGgVSzJoFkdAqwzBsl9jPXV9lChoBmgJaA9DCAM/qmG/J9+/lIaUUpRoFUsyaBZHQKsMeW2w3YN1fZQoaAZoCWgPQwh3EaYol8bYv5SGlFKUaBVLMmgWR0CrDALEUCaJdX2UKGgGaAloD0MIWHTrNT2o5b+UhpRSlGgVSzJoFkdAqw4JT2nKn3V9lChoBmgJaA9DCMdHizOGueC/lIaUUpRoFUsyaBZHQKsNuSq2jO91fZQoaAZoCWgPQwjGFoIclDDZv5SGlFKUaBVLMmgWR0CrDXDa4+bFdX2UKGgGaAloD0MIaW6FsBrL47+UhpRSlGgVSzJoFkdAqwz57PY4AHV9lChoBmgJaA9DCL8s7dRcbuC/lIaUUpRoFUsyaBZHQKsO/eTmnwZ1fZQoaAZoCWgPQwj6ff/mxYnZv5SGlFKUaBVLMmgWR0CrDq6nzg/DdX2UKGgGaAloD0MIzjP2JRsP5L+UhpRSlGgVSzJoFkdAqw5nXf642HV9lChoBmgJaA9DCEfoZ+p1i9e/lIaUUpRoFUsyaBZHQKsN8YOUdJd1fZQoaAZoCWgPQwjJjo1AvK7Yv5SGlFKUaBVLMmgWR0CrD/c14xDcdX2UKGgGaAloD0MIhdIXQs7717+UhpRSlGgVSzJoFkdAqw+nGIbfg3V9lChoBmgJaA9DCFdD4h5Ln+W/lIaUUpRoFUsyaBZHQKsPXrVOKwZ1fZQoaAZoCWgPQwiw5gDBHD3jv5SGlFKUaBVLMmgWR0CrDuf9xZMddX2UKGgGaAloD0MIT1lN1xNd3L+UhpRSlGgVSzJoFkdAqxEMSCe2/nV9lChoBmgJaA9DCA5LAz+qYdm/lIaUUpRoFUsyaBZHQKsQvSde6Zp1fZQoaAZoCWgPQwj+tFGdDmTjv5SGlFKUaBVLMmgWR0CrEHWp6yB1dX2UKGgGaAloD0MIPJ8B9WZU5L+UhpRSlGgVSzJoFkdAqxAA20iQk3V9lChoBmgJaA9DCDvj++JSleG/lIaUUpRoFUsyaBZHQKsSB3ai9Ix1fZQoaAZoCWgPQwjF506w/zrYv5SGlFKUaBVLMmgWR0CrEbd8qnWKdX2UKGgGaAloD0MIwap6+Z2m4L+UhpRSlGgVSzJoFkdAqxFvOSntOXV9lChoBmgJaA9DCNGy7h8L0eG/lIaUUpRoFUsyaBZHQKsQ+GFi8Wd1fZQoaAZoCWgPQwiVC5V/La/Sv5SGlFKUaBVLMmgWR0CrEvueBg/kdX2UKGgGaAloD0MIUMQihh1G5b+UhpRSlGgVSzJoFkdAqxKrsY2sJnV9lChoBmgJaA9DCFJ/vcKCe+O/lIaUUpRoFUsyaBZHQKsSY0/GEPF1fZQoaAZoCWgPQwiDpbqAlxndv5SGlFKUaBVLMmgWR0CrEexsVLzxdX2UKGgGaAloD0MIGjbK+s3E17+UhpRSlGgVSzJoFkdAqxPylnAZbnV9lChoBmgJaA9DCAlTlEvjF+K/lIaUUpRoFUsyaBZHQKsTom65Gz91fZQoaAZoCWgPQwjfN772zJLUv5SGlFKUaBVLMmgWR0CrE1oPK+zudX2UKGgGaAloD0MIrDyBsFOs4r+UhpRSlGgVSzJoFkdAqxLjS5RTCXV9lChoBmgJaA9DCHjVA+YhU9e/lIaUUpRoFUsyaBZHQKsVLdWQwK11fZQoaAZoCWgPQwiA8+LEVzvhv5SGlFKUaBVLMmgWR0CrFN6pgkTpdX2UKGgGaAloD0MI9b2G4LiM3L+UhpRSlGgVSzJoFkdAqxSXMW43FXV9lChoBmgJaA9DCCIZcmw9Q9m/lIaUUpRoFUsyaBZHQKsUITRplBh1fZQoaAZoCWgPQwjjpgaaz7nhv5SGlFKUaBVLMmgWR0CrFsfIKc/ddX2UKGgGaAloD0MIIhyz7Elg07+UhpRSlGgVSzJoFkdAqxZ4ldC3PXV9lChoBmgJaA9DCDYf14aKceK/lIaUUpRoFUsyaBZHQKsWMUqQRwt1fZQoaAZoCWgPQwhPWOIBZVPjv5SGlFKUaBVLMmgWR0CrFbtI9TxYdX2UKGgGaAloD0MI/7EQHQJH4b+UhpRSlGgVSzJoFkdAqxhs+C9RJnV9lChoBmgJaA9DCBxAv+/fvN+/lIaUUpRoFUsyaBZHQKsYHe3QUpN1fZQoaAZoCWgPQwiLcJNRZZjjv5SGlFKUaBVLMmgWR0CrF9aN+9amdX2UKGgGaAloD0MI4EvhQbPr07+UhpRSlGgVSzJoFkdAqxdg2VE/jnV9lChoBmgJaA9DCMMuih74GNq/lIaUUpRoFUsyaBZHQKsaFjjJdSl1fZQoaAZoCWgPQwg4FakwthDlv5SGlFKUaBVLMmgWR0CrGccRcu8LdX2UKGgGaAloD0MIyT1d3bHY27+UhpRSlGgVSzJoFkdAqxl/m3fAK3V9lChoBmgJaA9DCOCGGK95Vdq/lIaUUpRoFUsyaBZHQKsZCeTV2A51fZQoaAZoCWgPQwhApN++DpzYv5SGlFKUaBVLMmgWR0CrG9LmZE2HdX2UKGgGaAloD0MIucSRByKL1r+UhpRSlGgVSzJoFkdAqxuDuSfUWnV9lChoBmgJaA9DCAJJ2LeTiNy/lIaUUpRoFUsyaBZHQKsbPEd/8VJ1fZQoaAZoCWgPQwhkPEolPKHkv5SGlFKUaBVLMmgWR0CrGsXeN1hcdX2UKGgGaAloD0MIlYCYhAt517+UhpRSlGgVSzJoFkdAqxzGRoysS3V9lChoBmgJaA9DCMYYWMfxQ+S/lIaUUpRoFUsyaBZHQKscdjLjght1fZQoaAZoCWgPQwhbs5WX/M/iv5SGlFKUaBVLMmgWR0CrHC3XRPXTdX2UKGgGaAloD0MIzzEge7373r+UhpRSlGgVSzJoFkdAqxu29OARTXV9lChoBmgJaA9DCI+mejL/6NW/lIaUUpRoFUsyaBZHQKsdzKaoddV1fZQoaAZoCWgPQwi4kh0bgXjjv5SGlFKUaBVLMmgWR0CrHXyQYDT0dX2UKGgGaAloD0MIP1WFBmLZ2b+UhpRSlGgVSzJoFkdAqx00OPNmlXV9lChoBmgJaA9DCCLCvwgaM9y/lIaUUpRoFUsyaBZHQKscvXT3IuJ1fZQoaAZoCWgPQwhzol2FlB/mv5SGlFKUaBVLMmgWR0CrHsLXL/0edX2UKGgGaAloD0MIRG/x8J6D4b+UhpRSlGgVSzJoFkdAqx5y2Yv38HV9lChoBmgJaA9DCEZe1sQCX92/lIaUUpRoFUsyaBZHQKseKolUp/h1fZQoaAZoCWgPQwjbUDHO34Tfv5SGlFKUaBVLMmgWR0CrHbO+qR2bdX2UKGgGaAloD0MIoUs49BYP1b+UhpRSlGgVSzJoFkdAqx/Zoh6jWXV9lChoBmgJaA9DCJw0DYrmgem/lIaUUpRoFUsyaBZHQKsfiZlWfbt1fZQoaAZoCWgPQwiGAUuuYvHfv5SGlFKUaBVLMmgWR0CrH0FnqVyFdX2UKGgGaAloD0MIsFjDRe7p2L+UhpRSlGgVSzJoFkdAqx7Kzw+dLHV9lChoBmgJaA9DCI4j1uJTAOC/lIaUUpRoFUsyaBZHQKsg5v3JxNt1fZQoaAZoCWgPQwgAN4sXC8Pgv5SGlFKUaBVLMmgWR0CrIJcRL9MsdX2UKGgGaAloD0MIW+ogrwcT4b+UhpRSlGgVSzJoFkdAqyBO4NI9T3V9lChoBmgJaA9DCHE8nwH15uK/lIaUUpRoFUsyaBZHQKsf2DL8rI51fZQoaAZoCWgPQwiYolwav/Dav5SGlFKUaBVLMmgWR0CrIfrJKaoddX2UKGgGaAloD0MIZaVJKej24b+UhpRSlGgVSzJoFkdAqyGrIkqto3V9lChoBmgJaA9DCFjk1w+xwdW/lIaUUpRoFUsyaBZHQKshYtdzGPx1fZQoaAZoCWgPQwgkgQabOg/mv5SGlFKUaBVLMmgWR0CrIOwW3z+WdX2UKGgGaAloD0MIg4jUtItp4L+UhpRSlGgVSzJoFkdAqyL60pmVaHV9lChoBmgJaA9DCBA+lGjJY+y/lIaUUpRoFUsyaBZHQKsiqt1ZDAt1fZQoaAZoCWgPQwjOHJJaKJnlv5SGlFKUaBVLMmgWR0CrImKlYU35dX2UKGgGaAloD0MI4WBvYkhO2r+UhpRSlGgVSzJoFkdAqyHr8tPHk3V9lChoBmgJaA9DCCqRRC+jWNq/lIaUUpRoFUsyaBZHQKsj91AZ88d1fZQoaAZoCWgPQwjH9e/6zNnhv5SGlFKUaBVLMmgWR0CrI6c4HX2/dX2UKGgGaAloD0MIzcr2IW+54L+UhpRSlGgVSzJoFkdAqyNezjWCmXV9lChoBmgJaA9DCKtefqfJjNi/lIaUUpRoFUsyaBZHQKsi5/lyR0V1ZS4="
51
+ },
52
+ "ep_success_buffer": {
53
+ ":type:": "<class 'collections.deque'>",
54
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
55
+ },
56
+ "_n_updates": 1230,
57
+ "n_steps": 2048,
58
+ "gamma": 0.99,
59
+ "gae_lambda": 0.95,
60
+ "ent_coef": 0.0,
61
+ "vf_coef": 0.5,
62
+ "max_grad_norm": 0.5,
63
+ "batch_size": 64,
64
+ "n_epochs": 10,
65
+ "clip_range": {
66
+ ":type:": "<class 'function'>",
67
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
68
+ },
69
+ "clip_range_vf": null,
70
+ "normalize_advantage": true,
71
+ "target_kl": null,
72
+ "observation_space": {
73
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
74
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
75
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
76
+ "_shape": null,
77
+ "dtype": null,
78
+ "_np_random": null
79
+ },
80
+ "action_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 3
86
+ ],
87
+ "low": "[-1. -1. -1.]",
88
+ "high": "[1. 1. 1.]",
89
+ "bounded_below": "[ True True True]",
90
+ "bounded_above": "[ True True True]",
91
+ "_np_random": null
92
+ },
93
+ "n_envs": 4
94
+ }
ppo-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe3f4963725ea7096cec5c21cc0a2f2a82fb5ec55ce202cde0e4ec2000996fc9
3
+ size 92400
ppo-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7e96916634ee7286b8988a27e4ca199a2751671d12a1cffb24c35927fc8df51
3
+ size 46014
ppo-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.5191138751804827, "std_reward": 1.1513910550551703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-22T17:11:10.724062"}
 
1
+ {"mean_reward": -0.45285536493756806, "std_reward": 0.08185333799165283, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-22T18:13:44.362273"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a03b37f69ce25d4677158aee77b2247c447288759f7e207665ca1bcb52d3572
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15b3940a5a941554e51eb8bbedeb63af79b3c101eb66d4d862ec9c477b4f6701
3
  size 2387